
www.manaraa.com

MICROFILMED - T985

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

INFORM ATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)” . I f it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again-beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

University
Micrcxilms

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8500437

Shaw , Jen g -P in g

THE DESIGN O F A DISTRIBUTED KNOWLEDGE-BASED SYSTEM FOR THE
INTELLIGENT MANUFACTURING INFORMATION SYSTEM

Purdue University Ph.D. 1984

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PLEASE NOTE:

In all cases this material has been filmed in the Lest possible way from the available copy.
Problems encountered with this docum ent have been identified here with a check m ark -J .

1 Glossy photographs or p ag e s______

2. Colored illustrations, paper or p rin t______

3. Photographs with dark b ackground______

4. Illustrations a re poor c o p y_______

5. Pages with b lack marks, not original copy_______

6. Print shows through as there is text on both sides of page_______

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirem ents______

9. Tightly bound copy with print lost in spine_______

10. Com puter printout pages with indistinct p rin t_______

11. P a g e (s)_____________ lacking when material received, and not available from school or
author.

12. P ag e(s)_____________ seem to be missing in numbering only as text follows.

13. Tw o pages n u m b e red _. Text fol lows.

14. Curling and wrinkled p ag es______

15. O ther__

University
Microfilms

International

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

THE DESIGN OF A DISTRIBUTED KNOWLEDGE-BASED SYSTEM

FOR THE INTELLIGENT MANUFACTURING INFORMATION SYSTEM

A Thesis

Submitted to the Faculty

of

Purdue University

by

Jeng-Ping Shaw

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 1984

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PURDUE UNIVERSITY

Graduate School

By.

This is to certify that the thesis prepared

Jeng-Ping Shaw

Entitled -The Design of a Distributed Knowledge-Based System for the

________Intelligent: Manufacturing Information System__________________

Complies with University regulations and meets the standards of the Graduate School for
originality and quality

For the degree or:

_______ Doctor of Philosophy____________________

Signed by the final examining committee:

Approved by the head of school or dep^rtmenl):

>2/19

□ is
This thesis (HI is not to be regarded as confidential

Major professor
Grad. School
Form No. 9
Revoed 11-83

, chair

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ii

ACKNOWLEDGEMENTS

I wish to express sincere thanks to my advisor, Professor Andrew

E. Whinston, for his guidance and support throughout the course of

my doctoral studies. His efforts and insights have contributed

immeasurably to this research and to my knowledge in information

systems.

I am grateful to Professors Robert Bonczek, Clyde Holsapple, and

Robert Minch, members of my dissertation committee, for their invalu­

able assistance to my dissertation research, and to Professor Timothy

Lowe, for his constant help and advice.

I would like to acknowledge the support made possible by grants

from Purdue Research Foundation, CIDMAC, and IBM. Also, thanks are

due to Ms. Kathy Smith who typed the final manuscript. Her conscien­

tious efforts in preparing the difficult figures were much needed and

appreciated.

Finally, I wish to thank my wife Crystal. Without her support

and understanding, this dissertation would never have, been completed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

i i i

TABLE OF CONTENTS

Page

LIST OF TABLES... vi

LIST OF FIGURES... vii

ABSTRACT... ix

CHAPTER 1 - INTRODUCTION 1

1.1 C/erview... 1
1.2 The Environment................................ 3
1.3 Problem Solving in CIMS............................ 6
1.4 Planning and Problem Solving 11
1.5 Distributed Problem Solving........................ 13
1.6 An Outline of the Thesis.......................... 16

CHAPTER 2 - DISTRIBUTED PROBLEM SOLVING: A FRAMEWORK FOR
INTELLIGENT INFORMATION PROCESSING 18

2.1 Characteristics of Distributed Problem Solving Systems 18
2.1.1 Introduction................................ 18
2.1.2 Economic Aspects of Distributed Problem Solving 22
2.1.3 The Reasons for Using Distributed Problem

Solving Systems 25
2.1.4 Communication Networks...................... 28
2.1.5 Distributed Expertise and Control 30

2.2 A Review of Existing Systems...................... 32
2.2.1 The Heresay II System...................... 33
2.2.2 The Ether System............................ 34
2.2.3 Contract Net................................ 36
2.2.4 The DPS Network.................. 37

2.3 Strategies of Distributed Problem Solving........... 40
2.3.1 The Global-Coherence Issues 40
2.3.2 Coordination Schemes........................ 41
2.3.3 Cooperation Strategies...................... 45
2.3.4 Organization Structuring.................... 47
2.3.5 Satisficing versus Optimizing 50
2.3.6 Summary................................... 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

i v

Page

CHAPTER 3 - PLANNING IN A DISTRIBUTED ENVIRONMENT........... 54

3.1 Introduction...................................... 54
3.2 The Knowledge-Based Approach to Planning 57
3.3 Planning for Multiple Jobs: The Nonlinear Planning

System....... 64
3.3.1 Previous Planning Systems 66
3.3.2 An Overview of the Proposed Method........... 70

3.4 An Application: The Sequencing and Scheduling Problem
in a Manufacturing Cell............................ 71
3.4.1 The Problem................................ 71
3.4.2 The Knowledge-based Planning System 76
3.4.3 Plan Revisions.............................. 104

3.5 Distributed Planning 119
3.5.1 Planning by Multiple Agents 119
3.5.2 Communication and Synchronization 121
3.5.3 Synchronization Based on Message Passing. . . . 124
3.5.4 The Application of Distributed Planning to a

Machine Loading Problem 127
3.6 Conclusion....................................... 130

CHAPTER 4 - TASK SHARING AND PLANNING IN CELLULAR FLEXIBLE
MANUFACTURING SYSTEMS 132

4.1 Introduction..................................... 132
4.1.1 Overview................................... 132
4.1.2 The Structure of a Cellular Flexible

Manufacturing System........................ 134
4.2 Cooperative Planning in the CFMS Environment....... 140

4.2.1 Reconfiguration of CFMS and the Task Sharing
Problem....................................

4.2.2 Modelling the Coordinating Cells: The Society
of Experts Metaphor 141

4.2.3 A DPS Formalism for the CFMS................ 142
4.3 The Contract Net Strategy........................ . . 147

4.3.1 Negotiation Procedure for the Dynamic
Reconfiguration of CFMS.................. . 147

4.3.2 The Design of Communication Protocol for the
CFMS....................................... 148

4.4 Implementing the Contract Net...................... 152
4.4.1 A Model for the Negotiation Process......... 152
4.4.2 Implementing the Protocol.................. 160
4.4.3 A Task-Sharing Algorithm Based on Controlled

Production System........... 164
4.4.4 Issues of Efficiencies...................... 170

4.5 Concluding Remarks 176

CHAPTER 5 - SUMMARY AND CONCLUSIONS........................ 178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

V

LIST OF REFERENCES

APPENDICES

Page

184

Appendix A... |®9
Appendix ...

VITA.. 196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

v i

LIST OF TABLES

T a b le Page

2.1 A Comparative Study of Four Distributed Problem
Solving Systems 53

3.1 The Machines.. 74

3.2 The Operations................. 74

3.3 Operation Requirements of Each Part.................... 74

3.4 The Capabilities of Machines........................... 75

3.5 The Average Operation Times (unit)...................... 75

3.6 Average Transfer and Load/Unload Time 76

3.7 The Set of Predicates................................ 77

3.8 The Set of Operators.................................. 81

3.9 The Table of Multiple Effects (TOME).................. 88

3.10 Resource Declarations of Planning Steps 91

3.11 Planning Cycles Generated by PLAN-AHEAD 100

4.1 The Production System................................ 158

4.2 Specifying the Production System in Program Form........ 161

4.3 The PNL Description for Petri Nets of the Negotiation
Process... 163

Appendix
Table

B.l Predicate Literals Used in the Negotiation Protocol . . . 192

B.2 Functions Used in the Negotiation Protocol............. 193

B.3 Procedures Used in the Negotiation Protocol........... 194

B.4 Lists Used in the Negotiation Process................ 195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

F ig u re Page

3.1 Basic Structure of a Planning System................... 65

3.2 The Organization of a Manufacturing Cell............... 72

3.3 Linearly Sequenced Plan for PT 1....................... 85

3.4 Linearly Sequenced Plan for PT 2....................... 86

3.5 Parallel Plans with Synchronization Operations......... 94

3.6 The Schedule which Starts with Part 1 103

3.7 The Schedule which Starts with Part 2 105

3.8 The Planning System................................. 106

3.9 The Initial Conditions and the Ending Conditions for the
Plan-Revision Steps 109

3.10 The Search Tree for a Plan Using an Alternative Resource. 110

3.11 The Revised Plan for Part 1 112

3.12 The Schedule after Plan Revision...................... 113

4.1 Cellular Flexible Manufacturing System................ 135

4.2 The Organization of a Manufacturing Cell.............. 137

4.3 The Control Hierarchy............................... 138

4.4 A Structure of the Protocol.......................... 151

4.5 The Task-Announcement Process 156

4.6 The Bidding Process................................. 157

4.7 The Knowledge Base for Negotiation Protocol........... 171

4.8 The Flow Chart of the Task-Sharing Algorithm........... 172

4.9 The Organization of a Cell Host...................... 173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

viii

Appendix
Figure Page

A.l The Search Tree Generated for the Planning o(: PART 1. . . 189

A.2 The Search Tree Generated for the Planning of PART 2. . . 190

A.3 The Flow Chart for PLAN-AHEAD, a Plan Generator..... 191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

Shaw, Jeng-Ping, Ph.D., Purdue University, August 1984. The Design of
a Distributed Knowledge-Based System for the Intelligent Manufacturing
Information System. Major Professor: Andrew B. Whinston.

This thesis incorporates planning and distributed problem solving

into the design of manufacturing systems. Such an information system

is characterized by the hierarchical organization and distributed con­

trol. The environment consists of a group of manufacturing cells; each

cell uses a knowledge-based planning system to manage the jobs within

the cell while interacting with other cells through the communication

network.

First, a framework for using the knowledge-based method to perform

the planning and control of manufacturing jobs is developed. The

dynamic environment is represented by a world model, the operations

are represented by state-changing transformations, and manufacturing

steps are derived by the plan generation. The coordination of con­

current activities and the management of shared resources are empha­

sized by including the duration and the resource in the planning

formalism.

Plans are constructed in three steps. First, a linearly-

sequenced plan is generated for each job independently by a search

procedure. In the second step, a plan generator is used to establish

necessary precedence relationships between operations by performing

look ahead and avoiding any conflicts. Conflict detection can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

X

achieved either by a "critic" mechanism or a "reasoning about

resource" mechanism.

In step three, a plan-revision scheme is used to improve the plan

so that the final plan has the shortest duration. The planning system

can function as a scheduler in a manufacturing cell, characterized by

being goal-directed, event-driven, and able to perform both static

and dynamic types of on-line scheduling.

Because the control is decentralized, the whole information

system can be viewed as a society of experts and each cell is a

problem solving agent with predefined expertise. A negotiation proto­

col is used to regulate communication and task allocation among cells.

This thesis attempts to use the market structure to organize the

information system: tasks are viewed as commodities and cells as the

bidders with varying preferences.

The augmented Petri net model is used to represent the negotiation

protocol and is implemented in a controlled rule-based system. The

execution of the negotiation protocol is accordingly accomplished by

an inference procedure in the rule-based system. Thus, this thesis in

effect has adopted a unified approach to the planning process and the

allocation process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1

CHAPTER 1
INTRODUCTION

1.1 Overview

In this thesis, Issues concerning the design of an information

system for the computer integrated manufacturing environment are

addressed. Such an information system is characterized by multi-level

organization, distributed control, dynamic environment, concurrent

activities, resource sharing, and real-time, on-line planning and con­

trol. The concepts and results from the field of artificial intelli­

gence in many ways can be effectively used to meet these requirements.

The focus of this thesis is centered around the application of two

areas: knowledge-based planning and distributed problem solving.

One goal of this thesis is to develop a framework for using the

knowledge-based approach to perform planning and control of the manu­

facturing processes on an on-line basis. Based on the approach, the

dynamically changing environment is represented by a world model, the

manufacturing processes are represented by state-changing transforma­

tions, and manufacturing plans are derived by an inference engine. In

the manufacturing domain, the coordination of concurrent activities

and the management of shared resources are especially important in the

planning. This planning system can then be used to schedule operations,

decide the routing of manufacturing jobs, assign machines and other

resources, and monitor the execution of manufacturing plans.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

Another goal of this thesis is to explore the methodology that can

incorporate distributed control in the information system. The type of

computer integrated manufacturing system dealt with in this thesis is

composed of a group of modules - called the manufacturing cells -

which are autonomous units connected by a communications network. A

distributed problem solving method is developed to coordinate the

activities in different cells and to enable the group of cells to

share manufacturing jobs in a cooperative fashion. The coordination

and interaction among the cells are modeled by a negotiation process,

which can be activated and controlled by a rule-based system. In this

context, the proposed information system is referred to as a distribu­

ted knowledge-based system.

Finally, this thesis also attempts to explore the structure and

the processing methodology for general, decentralized information

systems. Because of the developments in computer networking and

processor fabrication technologies, the structure of information

systems is evolving toward decentralization: a group of microcomputer-

based processors are connected by a communications network, perform­

ing problem solving jobs collectively. However, a new communications

approach is needed that enables the processors to cooperate effectively

during their problem solving. This approach not only regulates how the

processors communicate with each other, but also "what" they communi­

cate with. Every processor should think and reason about the inter­

actions with others in order to accomplish, with global efficiency, the

tasks they share. This can be accomplished by adding still another

protocol layer - called the problem-solving layer - to the traditional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3

network protocol, so that the Interactions between processors proceed

in a problem solving manner. Besides the computer integrated manufac­

turing domain, the office information system can also fit into this

structure: a group of office work-stations connected by a local area

network, performing electronic business procedures in a cooperative

fashion.

The organization of this kind of decentralized information systems

can be based on the "society of experts" metaphor. Each module in the

system - whether it is a manufacturing cell or an office work-station -

is viewed as an expert specializing in performing certain types of

tasks. For any given job entered into the system, the relevant experts

form a team that can accomplish the job efficiently. The structure of

the information system is organized as a "contract net" in this thesis,

with tasks viewed as commodities and the processor modules as the

bidders with varying preferences. Just like the way commodities are

allocated to economic agents through the market, the tasks can be

allocated through the contract net to the modules efficiently.

1.2 The Environment

The on-line availability of computers in manufacturing systems

helps realize the concept of flexible automation - automation that can

handle a large and constantly changing variety of produced parts.

Moreover, the use of computers also brings about a second capability:

real-time optimization of manufacturing processes and problem solving.

These two capabilities are integrated into a fully automated manu­

facturing environment - referred to as the computer-integrated manu­

facturing system (CIMS).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4

An architecture for a CIMS has been proposed by the National

Bureau of Standard (McLean et. al. [1983]). Consisting of manufac­

turing cells as the component modules, systems with the proposed

architecture can be built incrementally with cells and their interfaces

as the standard units. The organization is composed of five levels:

facility, shop, cell, work-station, and equipment. The control system

at each level of the architecture takes commands from only one higher-

level system, but it may direct the control system at the next lower

level. This thesis uses a similar, three-level organization as the

target environment, leaving out the managerial issues at the facility

level and combining work-stations and equipments to be the machine

level. This three-level organization for the CIMS is as follows.

1) Level one: the shop level. A shop is composed of a group of

manufacturing cells connected by a local area network. This level

is responsible for the real-time management of jobs and resources

on the shop floor by performing two primary functions: task

allocation and resource assignment. For a given job, the shop

system first executes process planning - selecting the sequence of

manufacturing operations that can complete the job according to the

specifications; the shop system then selects appropriate cells for

the operations and delivers tools and other resources to the cells

if necessary. Furthermore, the shop manages the automation pro­

grams by an on-line storage facility and supplies the automation

programs to the cell host when a part is sent to a cell. Because

the shop-level system does not have global control of the cells, it

is a decentralized system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

*»-

5

2) Level two: the cell level. A flexible manufacturing cell consists

of a group of numerical machines with integral material-handling

equipments under the control of a host computer. The host computer

is responsible for performing planning and control within a cell.

It schedules tasks to machines, coordinates the machines in per­

forming the multiple jobs, and manages the resources in the cell.

Communications interfaces are provided at this level so that the

cell host can communicate with other cells. In a CIMS, a flexible

manufacturing cell is viewed as an autonomous unit.

3) Level three: the machine level. The control system at this level

includes the controllers for machines, parts handling equipments,

and robots. In order to make a manufacturing cell fully autono­

mous, it is important for the controllers at this level to be able

to send and receive complex messages from the cell host; moreover,

the controller must be linked directly to the host and allow the

cell host to do the following: (1) Command the execution of auto­

mation programs on the machine controllers. (2) Down-load automa­

tion programs to the machine controllers and receive up-loaded

programs from the controllers. (3) Access the state of the machine

controllers in order to maintain a detailed account of the status

of the cell.

Designing an information system in such an environment requires

that activities of autonomous components in the CIMS be well coordi­

nated and that the planning and control of the manufacturing processes

be. executed in an efficient and responsive manner. The primary issues

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

can be broken down into the following:

— scheduling of operations

— coordination of processes for different jobs

— sharing of resources

— monitoring of plan executions.

These issues are to be addressed by various kinds of problem solving

performed at different levels of the system, as will be described in

the following section.

1.3 Problem Solving in CIMS

The information system for the CIMS environment should possess

problem solving capabilities so that manufacturing processes can effi-

ciently transform the raw material into end products. The necessary

problem solving capabilities include:

Process selection

The purpose of process selection is to produce a process plan for

machining a part, given its drawing. The process plan should specify

the machining operations to be executed, the precedence ordering, the

machine tools to be used, and the surface requirements. In order to

produce the desired part with reasonable efficiency, such planning

involves taking into account both technological and economic consider­

ations. The former is concerned with the properties of manufacturing

operations, the latter the cost factors. For example, a reaming

operation is always preceded by a drilling operation and not vice

versa, this is constrained by the technological consideration. Econ­

omic considerations are exemplified by the rule that, since to execute

consecutive operations on the same machine can reduce the set-up cost,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7

operations that can use the same machine should be clustered together

in the process plan..

Because of the rules like those above, in the real-v;orld, the

process selection problem is solved mostly by constraint-satisfaction

and by heuristics rather than by optimization- Nau and Chang [1981]

propose to use expert systems to handle the process selection problem;

the expert system uses a frame-based organization where various

judgemental rules or decision heuristics are stored as expertise. In

this thesis, the plan, which is specified by a sequence of operations,

resulting from the process-selection procedure is assumed given.

Scheduling and routing

The scheduling problem can be defined as the problem of selecting

a sequence of operations to be performed by various machines in a

system. The execution of such a schedule results in the completion of

jobs, and assigning machine times and resources to each operation at

the right moments. Scheduling in the CIMS is particularly difficult

because of the flexibility of the system and the versatilities of

machines; more than one machine can perform a given operation and

several jobs are competing for shared resources. The scheduling

problem in such an environment is characterized by the concurrent

activities and the resource-sharing among the jobs.

This thesis uses the knowledge-based' planning approach to handle

the scheduling of multiple jobs. Specifically, nonlinear planning is

used to coordinate the execution of different jobs; the total duration

of the resulting schedule is minimized by maximizing the concurrency

among the jobs. During the plan-generation process, machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8

capabilities, operation precedence orderings, and resource availabili­

ties have been taken into account to decide the final schedule.

For the real-world problem, where the problem size is large and

many factors affecting the solutions must be considered, the schedu­

ling problem is often computationally intractable. Some heuristics

must be used to reduce the search space to a more tractable size. To

this end, Fox [1983] uses a constraint reasoning heuristic to direct

the search for schedules in a large-scale job shop environment. The

key part of the search for a schedule is the application of constraints

in reducing the search space. After each application of an operator,

the generated states are rated by applying the relevant constraints,

and only the best "n" states are kept for the next iteration of

operator application.

By organizing the manufacturing system as a collection of manu­

facturing cells, as is the case of the environment under study in this

thesis, the complexity of the scheduling problem can also be reduced.

The underlying strategy is similar to the problem reduction principle.

A job is decomposed into tasks to be performed by several cells and the

scheduling problem for each cell becomes much more manageable than the

scheduling of the original jobs for the whole system. Based on this

approach, the scheduling of jobs is accomplished by two steps:

1. task allocation at the shop level; and

2. operation scheduling at the cell level.

Decentralized task allocation

A CIMS consists of a group of manufacturing cells as processor

modules, each of which possesses different areas of expertise in terms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9

of manufacturing operations. Because the cells are connected by a

packet-switched local area network and the control is distributed, a

task entered into the system should be assigned to the best processor

module available in a decentralized fashion and the decision of allo­

cation has to be made based on local information, without any central

dispatcher.

The task allocation problem can be handled by an algorithm analo­

gous to the contract negotiation process, as proposed in Chapter 4.

This procedure consists of announcement-bid-award sequences to distri­

bute a task to appropriate cells; it is characterized as a mutual

selection process: a manager cell with tasks to be distributed

attempts to select the most suitable cell to handle the tasks, while

a cell with idle machines is also selecting among the announced tasks

and submitting bids on those tasks it prefers. A contract of task

allocation is established when a bidding cell is selected by the

manager cell.

Resource management

The resource management problem is the problem of assigning the

limited number of each type of resources in the CIMS environment,

including machines, tools, fixtures, pallets, and conveyors. This

thesis deals with the resource management problem in terms of feasi­

bility rather than optimality; the resources are subject to the con­

straint that only one job can have access to a resource at a time. The

proposed planning system treats the resource management problem in the

manufacturing domain as the resource management in the multiprocessing

operating system environment. Synchronizing mechanisms are therefore

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

used in the real-time planning program to postulate the mutually exclu­

sive condition when several jobs are competing for the resource. In a

similar context, Nof et. al. H980] propose the use of a "manufacturing

operating system" to direct concurrent processes and manage shared

resources in the manufacturing system. They use a variant of the Petri

net model to represent the operational logic so as to regulate the

flows of manufacturing processes.

System configuration

One of the advantages to have decentralized control and modular

structure is the dynamic configuration/reconfiguration capability. In

the CIMS environment, the individual manufacturing cells serve as the

basic modules. To complete the tasks required by a job, several cells

are "connected" to share the tasks; these cells then play the role of

the work-stations in a transfer line until the job is completed. The

set of connections of cells for individual jobs in the system is called

a configuration of the cells. Reconfiguration is needed when new jobs

are entered into the system to be assigned. By using the time-sharing

concept developed in Operating Systems, when a cell is assigned with

several jobs, it is a "virtual cell" for each job. The on-line plan­

ning system in each cell-host computer is responsible for coordinating

the multiple jobs in the cell.

Chapter 4 will adopt the market as the information system struc­

ture among the cells. Since there is no direct control between manu­

facturing cells, the communication among cells is accomplished by

means of task-announcement and bid-submission messages. A negotiation

process is used to ensure that tasks be distributed from a cell as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

manager to a cell as the contractor. The relationships between cells,

which determine the configuration, are dynamically established and a

cell can be the manager of one task while being the contractor of

another.

1.4 Planning and Problem Solving

Planning is a type of problem solving and its primary objective

is to develop an appropriate course of actions, among all the possible

actions, that transform the system (referred to as the "world") from

the current condition to a desired goal condition. The course of

actions generated by this process is called a plan. Such a planning

system is exemplified by the robot planning system, where robot plans

are generated by selecting and synthesizing robot actions to achieve

some stated tasks in a given environment.

The planning system can be organized in the form of a knowledge-

based system; that is, the knowledge is organized on three levels:

data, knowledge base, and control - as opposed to conventional programs

where the knowledge is organized on just two levels: data and program.

In the knowledge-based planning system, the declarative knowledge

about the goals, the current situation of the world, and the semi­

finished plan constructed are stored in a database at the data level.

On the other hand, in the knowledge-base level, is the domain-specific,

procedural knowledge. This knowledge is used to model the behavior of

the world, and is often given in the form of rules or operators.

Finally, in the control level is the knowledge about the strategy of

plan construction; it is related to the decisions of how to select

operators and when to apply them. This separation of control from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

program is one of the major characteristics of knowledge-based systems.

In a conventional computer program, knowledge pertinent to the

program and methods for utilizing this knowledge are all intermixed, so

that it is difficult to change the program. Using the knowledge-based

approach, the program itself is only a reasoning and control mechanism;

the system can be changed or remodeled by simply adding or subtracting

rules in the knowledge base.

Because planning involves exploration of alternative sequences of

actions, a symbolic model of the real world, referred to as a world

model, is used to serve as an abstraction of the environment as the

plans evolve. For any given planning problem, the initial condition

and the stated goal condition are hoth treated as instances in the

world model. The general function of a planning system, then, is to

construct a course of actions that transform one world model containing

an initial condition to a world model which matches the goal condition.

Thus, a planning system must have three basic components:

1. The world model, containing a symbolic description of the real

world. This world model is represented by the collection of first-

order predicates in a database. An instance of the database is

called a state-description in the world model.

2. The action model, describing the transformational effects of

actions that map states to other states. Such transformations are

usually modeled by operators, as the STRIPS operators defined in

Nilson [1980].

3. The inference engine, which is the control unit of the planning

system that directs the plan generation process. A sequence of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

operators are selected to achieve a described goal state from a

given initial state.

1.5 Distributed Problem Solving

Distributed problem solving is concerned with problem solving

situations in which a. group of problem solvers cooperate in performing

tasks to achieve a common set of objectives or goals. Such systems are

usually characterized by distributed knowledge and limited interactions

among the problem solving agents; both the processing power of the

agents and the communication capacities among the agents are considered

limited resources in relation to the size of problems to be solved.

Due to the limitations of interactions among problem solving

agents, each agent's view of the global activities in the distributed

system is both localized and limited. Every agent in the distributed

system must be able to direct its own activities in concert with the

activities of the other agents purely based on local information; the

aggregation of these local problem solving should be globally consis­

tent and coherent. There are many possible assignments of subproblem

tasks to problem solvers. Since these problem solvers possess diff­

erent kinds of expertise, they have differing degrees of appropriate­

ness with respect to a given task. The matchability between the

expertise of a problem sclver and the requirement of a task is

reflected by the processing cost of the problem solver: the better

the problem solver can perform the task, the lower the processing cost.

The primary issue of problem solving in a distributed environment

is then how to allocate subproblem tasks among the agents in a decen­

tralized manner, while minimizing the cost of processing as well as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

communication. How to overcome resource limitations - limitations

on storage capacities, processing capabilities, and communications

activities - is of cf .tral importance to the design of distributed

problem solving. These characteristics and issues of distributed prob­

lem solving systems are reminiscent of the characteristics and issues

that research in economics has been dealt with for quite some time.

The discipline of economics is concerned with the efficient use of

scarce resources. The traditional domain of economics contains systems

that are distributed at various levels: the level of the individual

actor (economic man of business forms), the level of markets, the level

of an entire economy, and, finally, the level of the world economy.

Within this framework, economics theories have addressed issues related

to distributed systems since Adam Smith's work on division of labor to

the more recent research developments on organizations (March and Simon

[1958]) and on the theories of teams (Marschack [1972]).

If processes and tasks in distributed problem solving systems are

viewed as commodities, then the task assignment problem can be related

to the resource allocation problems in economic systems. Problem

solvers possess differing degrees of appropriateness for a given task

just as economic actors have different levels of utilities for a given

commodity. In economic systems, it is well known that the market

mechanism solves the economic problem of equating supply and demand by

successive approximations to the equilibrating prices. The ideal market

mechanism, according to Simon [1981], is

"a dazzling piece of machinery that combines the optimizing

choices of a host of substantively rational economic actors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15

into a collective decision that is Pareto optimal for the

society."

Thus the market mechanism in a sense is also a computational method

for solving the problem of optimal resource allocation. In economic

systems, if such allocation problems are solved by a centralized

procedure rather than the market, the enormous number of equations

makes such a procedure impossible because of the processing and storage

requirements. The market mechanism, on the other hand, is character­

ized by reduced and localized computational requirements. At each

iteration in the operation of the market mechanism, each economic

actor adjusts its tentative allocation, making use of information only

about the current tentative prices and its own utility function. The

adjustment of tentative prices, at the same time, is established by

competitive bidding. It is the minimization of information require­

ments for each participant in the economy that constitutes the virtue

of using the market mechanism.

Since distributed problem solving systems exhibit characteristics

of economic systems, as described above, it is natural that the market

mechanism has been used to allocate resources, the subproblem tasks,

among problem solving agents. Smith [1978] and Malone [1983] are two

examples of this application. When an agent has a subproblem task to

be assigned, this task is treated as a commodity to be traded in the

market place: a description of the task is announced and those agents

who are interested will respond with bids (a bid contains information

about estimated completion time); the task is then assigned to the

best bidder. By treating each manufacturing cell in a CIMS as an agent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

with its own area of expertise, we shall apply the same market

mechanism to perform task allocation among the cells. This will be

discussed in Chapter 4.

1.6 An Outline of the Thesis

In Chapter 2, various issues related to distributed problem

solving will be discussed. We will especially analyze distributed

problem solving from the standpoint of economics and argue that gener­

alized distributed problem solving methods have long existed in econo­

mic systems and human organizations. After reviewing several repre­

sentative distributed problem solving systems, we shall describe stra­

tegies that can be used to achieve effective distributed problem

solving, under the constraints of restricted communications and

limited computational resources.

In Chapter 3, mechanisms will be described for using a knowledge-

based planning system to manage the computer-integrated manufacturing

system which is characterized as a distributed environment. Two kinds

of information in the action formalism are emphasized: resource and

duration. The planning system uses a "reasoning about resources"

mechanism to maintain the correctness of machine usages when several

manufacturing jobs are competing for the machine. A plan-gererator,

called PLAN-AHEAD, determines the precedence ordering between con­

flicting actions by means of the duration information; the final plan

- a partially ordered network - has maximized parallelism. A plan-

revision mechanism is used to reassign a job to an alternative

machine if the job is delayed in a machine queue. We will show that

the planning system can play the role of an on-line scheduler. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

scheduler is goal directed, event-driven, and able to cope with the

dynamic environments. Operating system techniques will be used to

provide appropriate synchronization and communication in coordinating

concurrent manufacturing activities. Planning steps are grouped into

critical sections according to the resources they need and thus maintain

the mutual exclusion of shared resources.

Chapter 4 will be concerned with the decentralized task allocation

problem at the shop level, referred to as the "cellular flexible

manufacturing system." A contract net protocol will be developed to

regulate orderly interactions between asynchronous, cooperating cells.

The underlying idea is to structure the interaction between cells as

the process of negotiation. Augmented Petri nets, an integration of

production rules and Petri nets, are used to model the contract net

protocol. The automation of this augmented Petri net provides the

basis to implement task allocation algorithm in a decentralized fashion.

Finally, Chapter 5 will conclude this thesis and propose possible

directions for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

CHAPTER 2
DISTRIBUTED PROBLEM SOLVING:

A FRAMEWORK FOR INTELLIGENT INFORMATION PROCESSING

2.1 Characteristics of Distributed Problem Solving Systems

2.1.1 Introduction

The purpose of this chapter is to explore the characteristics and

structures of distributed problem solving systems. Problem solving

may be described as finding a series of state changing actions that

will achieve a desired goal state given the initial state. A problem

solving system consists of either a single problem solving agent or a

set of agents that perform problem solving tasks to achieve the common

goal state or set of goal states. A system is considered distributed

if it consists of a set of agents that in general collaborate and

generally differ with respect to expertise and information. The

system's coordination of the process may be handled from a central

location or be decentralized among the set of problem solvers. The

two main givens of such a system are the expertise of the individual

agents and the location and type of control in the problem solving

process. Expertise is the set of abilities and knowledge an agent

possesses. The knowledge an agent possesses may change over time and

be transferred between agents during the problem solving process

while abilities are generally given characteristics of the agents. If

agents have identical expertise, then the system is homogeneous and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19

subproblem tasks are distributed throughout the system to balance the

work load.

Since a distributed problem solving system is comprised of a set

of problem solving agents, their actions must be coordinated to achieve

global solutions. Further, they must be connected by a communication

network. This will limit to varying degrees their interactions and

the coordination of the global problem solution. At any given point

in time an agent has unique information (localized) and a limited view

of the global problem solution and solution process. Both the process­

ing power of the individual problem solving agents and the communica­

tion capacities are limited resources within the system. Further,

the timing of communication and subproblem task solutions is important

in the coordination process. Information such as data to be used in

the subproblem task execution, subproblem tasks, and messages (defined

as data on the state of the system or the tasks during the solution

process) may pass between agents in the problem solving process. This

flow of information and an agent's other activities must be efficiently

directed and timed in concert with the activities of the other agents

to achieve a globally consistent and coherent solution to the problem.

This is the control of the system.

Problem solving in such a system is a dynamic process that usually

solves each problem as it enters the system in the following four

phases:

1. The decomposition of the problem into subproblem tasks.

2. The allocation of the subproblem tasks among the problem solvers.

3. The solution of the subproblem tasks by the problem solvers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

4. The integration of the solutions to obtain a global solution. This

phase may be viewed as another of the subproblem tasks to be execu­

ted by the individual problem solvers and included in the third

phase.

The allocation phase has received by far the most attention in the

literature. The system's goal in this phase is to efficiently allocate

the subproblem tasks among the problem solving agents. Since they are

distributed, no single agent has direct knowledge about the information

held by others. If the problem solvers differ with respect to exper­

tise (heterogeneous system), different assignments of subproblem tasks

will incur different solution costs. In fact, often there will be

subproblem tasks that certain problem solvers cannot solve. The over­

all solution time is also important. Balancing the task load among

the problem solvers involves considering the tradeoff between allowing

a task to wait in line for execution or letting a less capable problem

solver execute it. The matching of problem solver expertise and load

to task requirements so as to minimize the overall solution cost

(including waiting time cost) is the requirement for an efficient

allocation.

The particular process that a system uses to allocate subproblem

tasks may be more or less efficient in a specific environment than

another process. Further, a process that is very efficient in one

environment may be very inefficient in another. From a single problem

solver's point of view (with local information), the subproblem alloca­

tion phase is an information gathering process. Its efficiency depends

upon the flow of information within the system. First, the messages

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

which pass Information between problem solvers may vary in size. In

most environments, smaller messages are less costly than larger ones.

Secondly, since the transmission of a message takes time and uses

system resources, a large number of messages is more costly than a

small number. And thirdly, the distance the messages travel may be

important. For example, a message sent to several problem solvers is

usually more costly than one sent to a single system member.

The remainder of this chapter is organized as follows. First,

various issues related to the distributed problem solving system are

addressed. Economic aspects will be discussed in Section 2.1.2 where

it is argued that generalized distributed problem solving methods have

long existed in economic systems and human organizations. The advan­

tages of using a distributed problem solving system over a central­

ized system is presented in Section 2.1.3. Then, in Section 2.4, the

communication network in distributed problem solving systems is

characterized; it is an important feature but is also a restricted

resource in the system. Finally, the issues of allocating various

capabilities to agents are addressed. These include the distribution

of knowledge, abilities, and control among the agents.

In Section 2.2, four distributed problem solving systems are

described. Each of these four systems has unique features and

approaches in solving problems. These systems are: the HERESAY II

system, the Ether system, the Contract Net system, and the DPS net­

works .

Section 2.3 describes various strategies that have been used to

achieve effective distributed problem solving. These strategies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

Include coordination schemes (Section 2.3.2), cooperation strategies

(Section 2.3.3), organization structuring (Section 2.3.4), and the

"satisficing" strategy (Section 2.3.5). In the end, various represen­

tative distributed problem solving systems are compared in terms of

their characteristics and strategies.

2.1.2 Economic Aspects of Distributed Problem Solving

It is difficult to identify when the systematic study of distri­

buted problem solving systems began. Certainly the early work of

Adam Smith in economics pointed out many of the advantages of distri­

buted problem solving. Smith viewed the main economic problem as that

of the production of material wealth and argued that the division of

labor brought great advantages. "This great increase of the quantity

of work which, in consequence of the division of labour, the same

number of people are capable of performing is owing to three differ­

ent circumstances; first to the increase of dexterity in every particu­

lar workman; secondly, to the saving of time which is commonly lost in

passing from one species of work to another; and lastly, to the inven­

tion of a great number of machines which facilitates and abridge

labour, and enable one man to do the work of many" (Smith [1976]). The

division of labor means that rather than each worker solving the

problem of the production of a single good alone, several workers

cooperate in the solution. According to Smith, they will differ

with respect to expertise as specialization leads to differences in

both knowledge and abilities. Also, the second advantage of the divi­

sion of labor showed that Smith recognized that production (problem

solving) time is also an important factor. On the question of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23

coordination, Smith believed that buyers and sellers, if left alone,

would find it in their own self interest to work, produce, and exchange

goods in a way that would promote the efficient production of material

wealth. This distribution of control would occur as a "consequence of

a certain propensity in human nature... to truck, barter, and exchange

one thing for another."

Modern economics views the basic economic problem slightly

differently than Smith did, but still views it, essentially, as problem

solving. In the modern view, the basic economic problem is to allo­

cate given scarce resources to the production of various goods so as to

maximize the consumer's utility (satisfaction). At the level of a

single firm, the production of a single good (problem) is performed by

a single person (non-distributed problem solving system) or by a group

of workers with division of labor (distributed problem solving). If a

single firm produces more than a single good, then this joint produc­

tion is a case where there may be advantages to solving more than one

problem at a time. That is, producing one good makes producing the

second good more cost effective.

A market is another problem solving system in economics. In this

example, the problem of the production of a number of goods is handled

in a distributed problem solving system comprised of individual firms.

The market serves as a central location' that helps to coordinate

the agents' interactions in a very decentralized manner. The

messages passed between agents (firms) are all in the form of

prices. An entire economy is another level in economics that acts

as a problem solving system. Here again, firms are the problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

solving agents and in a market economy, the price mechanism coordinates

the problem solving process. Economic externalities are advantages to

solving more than one problem at a time if they are external benefits

and are disadvantages if they are external costs.

Perhaps the simpliest example of a problem solving system in

economics is an international trade model. Adam Smith argued for the

opening up of freer trade among nations to further take advantage of

distributed systems, but David Ricardo was the first to use economic

modeling in his analysis. Ricardo rigorously proved the law of

comparative advantage that stated that two countries would both gain

if each specialized in the production of those goods that were rela­

tively low-cost items.

A resource allocation in an economic environment is essentially a

subproblem task allocation. The goal of a resource allocation process

is to distribute the resources of an economy to a group of possibly

heteroegenous economic agents in an efficient manner. An economic agent

possesses unique information and is acquiring further information in a

basically decentralized manner to exchange resources in the search for

efficient allocations. Some resource allocation processes use a cen­

tral coordinator (referred to as an auctioneer in the economic litera­

ture) while others do not.

A tatonnement and a non-tatonnement resource allocation process

imply very different problem solving coordination strategies. One

type of tatonnement resource allocation process employs an auctioneer

(referred co as a Walrasian auctioneer) who coordinates the search for

trading partners by establishing resource prices that will lead to an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

efficient allocation. The auctioneer offers possible prices and agents

respond with quantities (demands for allocated item). Once an efficient

set of prices is established, all markets simultaneously clear (real­

location occurs). The strategy of the auctioneer is to continue to

search until an efficient set of prices is known and only then will

exchange occur (through some central market). Without actually having

a central coordinator (auctioneer), enough information would have to be

exchanged between agents so that all agents can decide upon trading

partners prior to the exchange taking place. A similar class of taton­

nement processes employs a coordinator who adjusts quantities rather

than prices (a Marshallian auctioneer). The only difference in this

process is that agents respond to the coordinator's quantity assignments

with price responses.

Under a non-tatonnement allocation process, much less searching

occurs. When a coordinator (Walrasian auctioneer) announces a set of

prices in his search for the set that will lead to efficiency, agents

respond as before with quantity changes (revealing their demand) but

reallocation occurs each time period at the current auctioneer prices.

Hence, exchange occurs each period and the search for the efficient

allocation involves much less searching.

2.1.3 The Reasons for Using Distributed Problem Solving Systems

The importance of the role played by distributed systems in the

development of information processing is attributable to several fac­

tors. Some information processing systems are inherently distributed,

where expertise or control may be easily decomposed into a

number of relatively independent modules either physically (spatially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

distributed system), functionally, or both. A number of problem

sowing systems are spatially distributed. In these, problem solving

agents are placed at different physical locations but require assist­

ance from each other. The communication protocol is thus an important

focus of their designs. Examples include the sensory networks (Smith

[1978], Corkill [1982]) and the intelligent consultant for ARPANET

(e.g., Rosenschein [1982], where intelligent agents located on various

computers in the ARPANET are used to help construct and execute plans

in the operating system domain).

The problem solving systems that are functionally distributed are

often decomposed into divisions, with each division corresponding to a

set of specific functions. The system that is purely functionally

but not spatially distributed would have no communication problems

since there is no physical separation of thê problem solving agents.

An example of this might be a human organization where the problem

solving system is located in a single office that performs several

different separate functions. A single worker with several clearly

defined and separated functions may also be viewed as such a problem

solving system.

A problem solving system that is both spatially and functionally

distributed is exemplified by an office information system where a

collection of work stations share tasks. Each work station is assigned

a specific set of functions in terms of capabilities and responsibili­

ties. Another example is the cellular system where each manufacturing

cell specializes in producing "part families" that require similar

manufacturing operations . To accomplish a job in such a system often

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

requires the joint effort of several cells associated with different

families.

Other advantages to employing a distributed problem solving

system include better reliability, performance speed-up, graceful

degradation, system extensibility, and modularity (Enslow [1977]).

Reliability refers to the ability of the problem solving system to

continue to function when a portion of the system network fails.

Performance speed-up occurs because problem solvers may execute sub­

problem tasks concurrently rather than serially. Graceful degradation

refers to the ability of the system to not only continue to function

when a portion of the system network fails but to continue to perform

relatively efficiently. System extensibility allows problem solvers

to be added without major system redesign. And modularity refers to

the flexibility of the network configuration. That is, each agent has

the same control structure so that the responsibilities of an agent may

be reassigned to other agents in case of failure. Modularity also

implies conceptual clarity and simplicitly of design and further

results in system extensibility. Another motivation of using the

distributed structure comes from the fabrication technologies of

computational processors that employ very large scale integrated

circuits. They have made it less expensive to make a number of smaller

processors for an information system rather than a single large

processor. And lastly, frequently, a problem solving system may con­

tain too much knowledge for a single problem solving agent to function

efficiently. Capacity limitations demand that the information be

distributed among several distributed problem solvers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28

2.1.4 Communication Networks

When a problem solving system is distributed spatially, the

interactions between problem solvers must go through a communication

network and are therefore constrained by the network's physical

limitations. The limited processing capability of each problem

solving agent adds to the communication needs of a distributed

system. In order to disseminate messages to one another to solve

problems cooperatively, the agents may have to compete for time slots

on the communication channel. Since most distributed problem solving

systems are physically distributed, the coordination problem with

the communication network limitations has been an important topic in

the literature.

Simon [1981] has termed the limitations on the processing

capability of each problem solving agent as bounded rationality. This

limitation applies both to the amount of information which can be

effectively handled by a problem solver to arrive at a decision and to

the processing power which each agent possesses. Also, the coordina­

tion activities of the system consume processing resources and further

tightens the limitations on the processing power of the problem

solvers.

The communication networks of distributed problem solving systems

may be categorized as either loosely-coupled or tightly-coupled. The

processing speed for computational processors is generally faster than

the speed of communication networks linking the processors. Therefore,

in a computer environment in particular, the tradeoff between the time

a system spends communicating and the time it spends processing is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29

important. If more processing power is spent in executing subproblem

tasks than in communicating with other processors, then the system is

loosely-coupled. Otherwise, the communication network is tightly-

coupled. While most of the distributed problem solving systems are

loosely-coupled, the Heresay II system (Erman et. al. [1980]) described

later in this chapter is an example of a tightly-coupled network.

The structure of the communication network within the organization

is a main determinant of the degree to which interactions between

agents are limited. The structure of the organization determines to a

large degree the roles and the responsibilities of the problem solvers.

Malone [1983] employs the market as a metaphor for distributed problem

solving systems and coordinates the problem solving activities through

a variant of the price system of the market. The Heresay II system

(Erman et. al. [1980]) uses a hierarchical structure similar to that of

a corporation. Other metaphors of organizational structures used in

problem solving systems are scientific communities (Kornfeld and Hewitt

[1981]) and committees (Chandrasekaran [1981]). Corkill [1982] goes

further and proposes a self-designing organization. That is, the

structure of the communication network is altered with each different

problem entering the system. The communication requirements associated

with coordinating such problem solving activities may be a source of

ideas for new or extended networking technologies, in which each site

in the network is treated as an intelligent agent instead of a dumb

terminal ,

Another approach to the problem of limited interactions between

agents is to focus on the task decomposition phase of problem solving.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

For example, Davis and Smith [1983] focus on the modularity and the

size of the subproblem tasks resulting from the problem decomposition.

The basic idea of their scheme is that if subproblem tasks are made

modular, they have fewer interdependencies and, therefore, fewer

processors coordinating the problem solving.

2.1.5 Distributed Expertise and Control

The expertise of an agent includes the knowledge and abilities

possessed by the agent. Knowledge is the information - both long-term

and short-term - acquired by the agent; ability is the inherent capa­

bility of the agent, which constrains the kind of knowledge the expert

can possess. For example, a computer processor may contain regression

subroutines and time-series data files; then the processor as a problem

solver possesses the "knowledge" to do regression analysis on that

given data. However, this problem solver has a different kind of

"ability" than that of an interactive graphic terminal. Another

example of distributed knowledge can be found in the multiprocessor

system Cm*, where the routines for the network operating system are

located at various processors. A system with distributed ability is

exemplified by the sensor network discussed in Davis and Smith [1983],

where the nodes consist of either sensors (for detecting image data)

or processors (for processing image data).

The expertise possessed by a problem solving system may be dis­

tributed among the agents. The distribution may result from the nature

of the system, as with, for example, a sensor network where sensory

signals are processed at different locations in the network. Distri­

bution of knowledge may result from the limited capacity of individual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

agents to store enough knowledge for a single problem. In this case,

each agent is assigned a specific portion from the whole knowledge

domain to be its area of expertise. The distributed problem solving

system can then be viewed as a set of cooperating experts where the

subproblem tasks are assigned to match the expertise of the agents.

The way the expertise within a system is distributed raises the

distinction between a homogeneous and a heterogeneous system. A

heterogeneous problem solving system is likely to be modularized where

problem solving agents possess different kinds of expertise. The

expertise of an agent may overlap in varying degrees with that of other

agents. When there is very little overlap, there are potential bottle­

necks in terms of certain types of subproblem tasks that may require

certain types of scarce expertise. The problem of allocating knowledge

to a given set of agents is similar to the file placement problem in

computer networks (Chen [1980] and Wah [1984]). The main problem in

the task allocation phase of problem solving is to match the subproblem

tasks to the given distribution of expertise efficiently.

In the case of homogeneous network systems, each agent has a full

range of problem solving capabilities. Matching tasks to problem

solvers is no longer a concern in the allocation phase of problem

solving. The main focus in these systems is on load balancing to

improve performance (Efe [1982] and Tantawi and Towsley [1984]).

In view of the fact that the individual agent in a distributed

problem solving system is capable of only a limited amount of problem

solving, the overall intelligence, or capability, of the system may be

viewed as a result of the interactions among the set of agents. This

<A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

effect is referred to as the emergent intelligence of the system.

The control of a system is distributed when processing and commun­

ication are not focused at a particular problem solver, but rather

every agent is capable of accepting and assigning tasks. The distribu­

tion of control helps avoid bottlenecks that could degrade performance.

However, when the control is distributed, the problem solving activi­

ties need to be coordinated among the agents to ensure global coherence

in solving the problems. Various coordination methods to exercise

distributed control are discussed in Section 2.3.

2.2 A Review of Existing Systems

In this section, four representative distributed problem solving

systems are discussed. Each of these systems employs unique concepts

distinctly different from other distributed problem solving systems.

The Heresay II system is one of the early distributed problem solving

systems that is distinguished by its hierarchical organization and the

use of the blackboard to coordinate its problem solving activities.

The Ether system emphasizes exploring the parallelism and concurrencies

among the problem solving activities. The contract net approach treats

a distributed system as an economic system and uses a decentralized

coordination scheme similar to the market mechanism. And finally,

the work on DPS networks by Corkill employs the most generalized

approach to distributed problem solving to date. By using meta-level

control to coordinate agents, the system structure changes with each

new problem and is treated as one of the subproblem tasks when a

problem is entered into the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

33

2.2.1 The Heresay II System

The Heresay II system (HSII) is an implementation of a class of

distributed problem solving organizations. The primary characteristics

of these organizations include: (1) multiple, diverse, independent,

and asynchronously executing knowledge sources (KS's); (2) the KS's

are invoked in a data-directed, cooperating fashion; and (3) coordina­

tion among KS's are achieved via a shared datibase called the

blackboard. The original tasks that HSII dealt with are speech under­

standing which needs to search in a large space of possible interpre­

tations for the utterance that best fits the input data, i.e., the

speech waveform signals.

The knowledge in the task domain Is represented in separate KS's.

Each KS can be viewed as an expert in its particular fields, communi­

cating with other experts via the blackboard. The basic data unit of

the blackboard is the hypothesis. A hypothesis represents a partial

solution to the overall problem expressed at one of the levels of the

blackboard. By reading or writing information on the blackboard, a KS

can either place a hypotehsis on the blackboard or test the blackboard

hypothesis produced by other KS's. The knowledge in the different KS's

can be used to interpret the utterance at different levels of repre­

sentation. The levels of representation form a hierarchy and each

level is built upon a lower level. The job of a KS is to solve prob­

lems at Its level of expertise by postulating subproblems at a lower

level or by solving the subproblems from a higher level. The problem

solving activities are data-directed, invoked by the current state of

the database.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34

The problem solving approach is as follows. The basic execution

cycle begins with the execution of a knowledge source that makes

changes to the blackboard monitor and determines what additional

knowledge sources should be executed in response to the changes. These

knowledge sources are placed on the scheduling queue that is ordered by

the scheduler based on the progress of problem solving in the system,

vfhen the currently executing knowledge source has completed, the highest

rated knowledge source on the queue is executed, and the cycle repeats.

2.2.2 The Ether System

The Ether system (Kornfeld [1979]) carries out problem solving

activities with an emphasis on allowing parallel processing of the sub­

problem tasks. Computation in Ether is carried out by computation

elements known as sprites. Using the pattern-directed control method,

a sprite consists of two parts, a pattern and a body. If the pattern

successfully matches an assertion that has been broadcast in the system,

the body of the sprite is executed and new sprites and assertions will

be created.

Following the Actor model created by Hewitt [1977], the Ether

system realizes all communication and control among sprites

by disseminating messages. Two kinds of communication elements may be

broadcast: assertions and goals. Assertions are intermediate results

of computations that need to be broadcast to inform related agents of

the new facts. The goal of each part of the system must be communi­

cated to other parts embodying expertise that may help achieve the

goal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

There is an allocation mechanism to distribute the available

processing resources to the active sprites. An agent of the system

that provides processing resources is called a sponsor. All sprites

capable of triggering do so through the support of a sponsor. A

sponsor may reallocate its resource on the basis of relative merits

of sprites.

Ether carries out parallel pattern directed invocation procedures

where all the applicable sprites (sprites whose patterns are matched)

which can get support from a sponsor will work on the goals concurrent­

ly. The coordination between different parts of the system is achieved

by messages passing without any requirements of shared memory or criti­

cal regions. Messages are broadcast through the system, the interested

agents have the option of intercepting and subsequently, adopting the

information.

Besides the speed-up due to parallel processing, Kornfeld [1982]

argues that because of the information shared between running sprites,

the problem solving activities may be further facilitated. This effect

is referred to as "combinatorial implosion."

In analyzing the problem solving behavior of Ether, Kornfeld and

Hewitt [1981] use the metaphor of scientific communities. A system of

sprites can be compared to a community of scientists working concur­

rently, keeping track of the new developments of the community. They

broadcast their goals and results in the form of proposals and publi­

cations, while looking for sponsors of resources to help achieve the

goal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

2.2.3 Contract Nets

The work on contract nets (Smith [1978] and Davis and Smith

[1983]) defines a framework for distributed problem solving based on

the market metaphor. A contract net protocol is developed to specify

communication and control in a network of problem solvers. Task dis­

tribution is viewed as an interactive process; negotiations are carried

on between an agent with a task to be executed and a group of agents

able to execute the task. A negotiation protocol is used to help

determine the content of the information transmitted, rather than

simply provide a means of sending bits from one agent to another as the

traditional network protocol does.

With the approach, the collection of problem solving agents is

referred to as a contract net and the execution of a task is determined

by a contract between two agents. Each agent in the net takes on one

of two roles related to the execution of an individual task: manager

or contractor. A manager is responsible for monitoring the execution

of a task and processing the results of its execution. A contractor

is responsible for the actual execution of the task. Individual agents

are not designated a priori as managers or contractors; these are only

roles, and any agent can take on either role dynamically during the

course of problem solving.

A contract is established by a process of local mutual selec­

tions based on a two-way transfer of information. Available con­

tractors evaluate task announcements made by several managers and sub­

mit bids on those for which they are suited. The managers evaluate

the bids and award contracts to the agents they determine to be the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

most appropriate. The negotiation process may then recur. A con­

tractor may further partition a task and award contracts to other agents.

In summary, the negotiation process has four important character­

istics: 1) it is a local process that does not involve centralised

control, 2) there is a two-way exchange of information, 3) each party

to the negotiation evaluates the information from its own perspective,

and 4) final agreements are achieved by mutual selection.

Based on the Contract Net approach, Malon [1983] uses a prototype

system called Enterprise that schedules tasks to processors in a decen­

tralized fashion. The environment is typically a local area network of

high-performance personal computers connected with an Ethernet. By

using the contract negotiation process to match tasks with processors,

better overall system performance is reported. This new methodology

has long-lasting effects on the design philosophy of office information

systems. By modeling the environment as a contract net, personal work­

stations are most of the time dedicated to their owners. But when the

owners are not using them, these personal workstations become general

purpose servers, available to other users on the network. Thus pro­

grams may be written to take advantage of the maximum amount of pro­

cessing power and parallelism available on a network at any time.

2.2.4 The DPS Network

Corkill [1982] uses a network of problem solving nodes, each with

a complete Heresay II architecture to investigate the cooperative

problem solving behavior in such a distributed network. The specific

problem domain is a distributed vehicle monitoring system that has a

number of processing nodes, with associated acoustic sensors,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38

geographically distributed over the area to be monitored. Each node

can communicate with one another over a packet radio communication

network.

The problem solving in the network requires a structure and

organization in which the nodes cooperatively converge to acceptable

answers in the face of incorrect, inaccurate>and inconsistent inter­

mediate results, as is the characteristic of acoustic signals. A

functionally accurate, cooperative approach is developed using an iter­

ative, co-routine type of node interaction in which a node's tentative

partial results are iteratively revised and extended through inter­

action with other nodes. It is claimed that by using this approach

much less communication is required to exchange these high-level par­

tial results than the communication of the massive raw data. In addi­

tion, the nodes can operate asynchronously, resulting in increased

parallelism and better performance. Further, because of the function­

ally accurate nature, better reliability is also expected.

Besides the basic blackboard structure used in Heresay II, Corkill

has integrated goal-directed control structure into each node. This

has been accomplished through the addition of a goal blackboard. Goals

are created on the blackboard as a result of a change in the data

blackboard, or they are sent by other nodes. The planner responds to

the insertion of goals on the goal blackboard by developing plans for

their achievement. Internode communication is added to the node

architecture by the inclusion of the communication knowledge source.

These knowledge sources allow the exchange of hypotehses and goals

among nodes. In a sense, these communication knowledge sources are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

functionally similar to the negotiation protocol processor, implemented

in the form of knowledge bases, as proposed in Shaw and Whinston [1983].

The communication activities are carried out through limited broad­

casting. Each communication knowledge source contains a list of nodes

that may be interested in a particular message and blocks other nodes

from receiving the message.

An important feature incorporated in the distributed problem

solving network is the use of meta-level control to guide the coopera­

tion among nodes. The meta-level control is represented as a network

organizational structure that specifies in a general way the informa­

tion and control relationships among the nodes. The organizational

role assigned to each node, its responsibilities, and the interaction

patterns are all represented by this meta-level control. The local

control component of each node elaborates these relationships into

precise activities to be performed by the node. Thus, the coordination

of activities among nodes is achieved by the combination of two con­

current activities: organizational structuring activities and local

control activities.

Meta-level control via organizational structuring is introduced

into the node structure by the specifications in the interest areas of

the architecture. These interest areas exercise their influences on

the problem solving activities by modifying the priority rating of

goals, specifying the list of nodes they are to send messages to or

receive messages from, and rating the importance of other nodes.

The various authority relationships among the nodes in the network

are specified by a relative weighing of activities generated locally

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

versus activities proposed by other nodes. Together, they represent

the control knowledge about the responsibility of the node in terms

of problem solving activities and their relationships between nodes.

Although currently the organizational structures are specified

directly into interest areas of the nodes, Corkill proposes to use an

organization blackboard for determining plausible structures for the

system and evaluating potential candidates for network reorganization.

2.3 Strategies of Distributed Problem Solving

2.3.1 The Global-Coherence Issues

Due to the limited interactions among problem solving agents, as

characterized in Section 2.1, each agent's view of the global activi­

ties in the distributed system is localized and restricted. It is

impractical to keep every agent constantly informed of the development

of other agents' activities or the changes in their databases. The

total requirements of communication activities are too enormous. In

addition, the use of a centralized controller is also precluded for the

sake of reliability; by using decentralized control, the network's

performance degrades gracefully when a portion of the network fails.

Therefore, some kinds of coordination are required to enable each agent

to direct its own activities in concert with the activities of the

other agents based on local decision and information; the aggregation

of these local activities should satisfy global coherence.

Thus, the primary issue in distributed problem solving is that the

solutions produced by individual agents not only are locally good,

achieving the assigned tasks, but that the aggregation of these local

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41

solutions should result in overall solutions that are globally accept­

able. This global coherence must be achieved by local problem solving

in a decentralized manner.

The difficulty in obtaining coordinated behavior when each agent

has only limited, local information of the system can be resolved by

effective - but limited - interaction between agents. Crucial informa­

tion is exchanged between agents in the most efficient forms; but the

amount of information exchanged should be enough so that each agent

can produce solutions that are globally coherent. The required global

coherence of distributed problem solving can be achieved by:

1) the cooperation among agents; or

2) interactions that can either resolve conflicts between agents or

help satisfy interdependent constraints among agents.

In the following section, various strategies that have been used

to address these issues are presented.

2.3.2 Coordination Schemes

In order to effectively organize the information flows among

agents and direct local activities to achieve global coherence, various

schemes of coordination have bean used. In most distributed problem

solving systems, the coordination is done by disseminating messages

among the agents. There are basically three kinds of messages for

these purposes: tasks, goals, and data. In terms of the amount of

semantic information, task messages contain more information than goal

messages, and goal messages in turn contain more information than data

messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42

Four coordination schemes will be discussed: externally-directed,

self-directed, negotiation, and meta-level controlled. A system is

using externally-directed coordination if agents do not initiate any

activities unless they receive messages from other agents informing

them what to do. Under the internally-directed scheme, on the other

hand, the agents generate their own decisions on their local activi­

ties. Both the negotiation scheme and the meta-level controlled scheme

can be viewed as the combination of the first two approaches. However,

the meta-level approach is more generalized in the sense that it can

contain a negotiation procedure. In general, the more semantic infor­

mation the messages contain, the more "external" is the coordination

scheme (one has to be clear in giving orders). Thus, under the self-

directed scheme, the messages mostly contain only data; whereas under

the externally-directed scheme, the messages contain tasks that need

to be done.

(1) Externally-Directed

When the coordination is externally-directed, an agent is required

to perform some actions in response to the receipt of messages. In a

sense, the scheme is similar to that of pattern-directed invocations;

patterns are contained in messages and sent by ether agents. Since an

agent's activities are directed and invoked by other agents through

disseminating messages, the agent has less flexibilities in its

processing strategies; this is a more structured scheme for network

coordination.

The Actor formalism developed by Hewitt [1977] and the Ether

system by Kornfeld [1979] are tvro examples of externally-directed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

schemes. The knowledge of an agent is stored as a collection of

"activities" and each activity is directed by some patterns. These

patterns will be matched against contents of the received messages and,

if matched successfully, the corresponding activities will be carried

out. In the actor model, each agent is modeled as an "actor", and

the correspond .ag activities are called the scripts.

(2) Self-Directed

When the coordination is self-directed, each agent determines the

portion of the overall tasks it should perform and the information it

should exchange with other agents, as opposed to externally-directed

systems where an agent is completely directed by other agents. The

subproblems in each agent, under the self-directed scheme, are solved

in a bottom-up manner. The task decomposition and node assignment

information is not known to the agents; subproblems in an agent are

generated from raw data collected by that agent. Lesser and Erman

[1980] and Corkill [1982] discuss ways of syntehsizing subproblems from

different agents to construct a consistent overall solution using the

self-directed approach. The major advantage of using self-directed

coordination is the flexibility the agents have in determining local

activities. They do not have to wait for messages from other agents

to initiate activities. This also contributes to graceful degradation

in case of system failures. An agent can immediately undertake activi­

ties to circumvent troubled portions of the system without interacting

with other agents at all.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44

(3) Negotiation

The negotiation process is both self-directed and externally-

directed. It has the ingredient of externally-directed coordination in

that, when a task message is announced, those potential contractors

(those agents who can do the task) must react to the announcement and

initiate a task evaluation procedure. These activities are invoked

externally by messages sent from other agents (the managers).

On the other hand, part of the negotiation process is self­

directed. For example, the manager's decision to delegate a task is a

self-directed action, without any control exercised by other agents;

so is the contractor's decision to accept a task.

This integration of self-directed and externally-directed

approaches is referred to by Galbraith [1977] as a "mutual-adjustment"

process for coordination. This approach possesses both the flexibility

of the self-directed approach and the efficiency of the externally-

directed coordination.

(4) Meta-level Coordination

The meta-level coordination scheme, as used in Corkill [1982], can

be split into two concurrent activities:

a) construction and maintenance of an organizational structure for

the agents; and

b) continuous local elaboration of this structure into precise

activities using the local control of each agent.

The organizational structure is used to provide each agent with a

high-level view of problem solving in the system. It specifies the

responsibility of each agent and the relationships among the set of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

45

agents (these specifications are recorded on an organization black­

board) . The local problem solving activities are planned in response

to the goals and subgoals. These goals are either created locally or

as a result of externally-directed requests from other agents (communi­

cated goals). Various types of network coordination can be achieved

by adjusting the responsibility (the "role") of agents or by adjusting

the authority relationship (the power structure) among agents. The

specification of responsibilities of an agent is done by determining

and modifying the priority ratings of goals and tasks in the agent;

the authority relationships among the agents is specified by a relative

weighting given to the importance of local problem solving versus

activities proposed by other agents. Thus, meta-level coordination is

a more general type of integration of externally-directed and self­

directed schemes than the contract net formalism.

2.3.3 Cooperation Strategies

The fact that each agent has only local, limited knowledge

encourages the cooperation among problem solving agents since none of

them can solve the whole problem. Davis and Smith [1983] develop a

contract net protocol to achieve the cooperation among agents, using

"tasks" as the basis of forming cooperation. Agents who share tasks

for the same problem work independently and synthesize their results

when completed. They argue that two different approaches can be used

to achieve cooperation among agents: task sharing and result sharing.

Using the task-sharing scheme,” agents divide the set of tasks

among themselves and each agent can independently solve subproblem

tasks using local knowledge. The major concern in this mode of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

46

cooperation is then to decide the task allocation - determining who

will do what - in a decentralized fashion. The contract net formalism

is an example of this type of cooperation.

In the result-sharing scheme, agents assist each other by exchang­

ing their partial results. Based on the updated information from other

agents, an agent would adjust its activities in the hope that better

solutions can be achieved. The Ether system in Kornfeld and Hewitt

[1981] uses this mode of cooperation. The set of agents

is likened to a scientific community, where scientists share their

intermediate results through publications - in the hope that this can

help facilitate problem solving.

The cooperation scheme advocated by Lesser and Corkill [1981]

represents yet another form of cooperation. The cooperation between

agents is based on "data''. In their problem, the input data to each

agent is, by nature, usually incorrect. Therefore, each agent has to

perform problem solving with incomplete data while simultaneously

exchanging the intermediate results of its processing with other

agents. It is hoped that by exchanging their intermediate results they

can construct cooperatively a complete solution, eliminating erroneous

results. Thus, the objective of cooperation in this case is for con­

sistency between agents, accomplished by iterations of exchanging

partial results.

Another form of cooperation occurs when the agents' tasks are not

independent and the agents need to cooperate in order to avoid possible

conflicts. For example, if one agent is to achieve ON(A,B) while

another agent is to perform PICKUP(B) in the block world, there is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

conflict between these two agents. One way for them to cooperate is

by suspending the task for ON(A,B) until block B is freed by the

second agent. This type of cooperation, which uses the suspension of

actions to avoid any conflicts among the agents, can be implemented by

the synchronizing mechanisms used in operating systems for real-time

resource management.

2.3.4 Organization Structuring

To resolve the inherent problems of bounded rationality and

limited interactions for each problem solving agent, distributed

systems often use structures that are tailored to the particular task

domains. The objectives of such system structuring are to reduce the

processing requirements and uncertainties faced by individual agents.

Simon [1981] uses markets and hierarchies as two prime examples

of structures that can be used to distribute information processing

throughout complex systems. In systems with these structures, the

processing requirement for each agent is little, but together the

system can achieve tasks such as decentralized resource allocations

that have enormous overall complexities.

Based on these viewpoints, distributed problem solving systems may

take advantages of the structures among the agents to effectively

distribute the problems. An organizational structure specifies the

responsibilities, the control pattern, and the interaction pattern

among the agents. It influences how a larger task should be decomposed

and then properly distributed, or how individual agents should behave

in specific situations. For example, functional hierarchies and

product-hierarchies are two possible structures for organizations;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48

problems to be solved would have to be decomposed and then allocated

differently using the two structures. Since different organizational

structures imply different distribution of control as well as different

information paths among agents, the problem that can be decomposed and

solved efficiently under one organization structure may not reach the

same level of performance in systems of other kinds of organizational

structures.

Several research studies embody aspects of market metaphors into

the design of their organizational structures (for example, Smith

[1978], Malone [1983], and Shaw and Whinston [1583]). The pri­

mary advantage of using market structure to organize agents is the

small amount of information transferred. This is described by Hayek

[1945]:

"... the most significant fact about this (market) system
is the economy of knowledge with which it operates, or how
little the individual participants need to know in order to
be able to take the right actions. In abbreviated form, by
a kind of symbol, only the most essential information is
passed on, and passed on to those concerned. ... the price
system is used for registering changes in order to adjust
their activities to changes of which they may never know more
than is reflected in the price movement ...".

By adopting the market as the basic structure in distributed

problem solving systems, it is hoped that the same kind of information

efficiency would take place in task allocation. The system with a

market structure eliminates all forms of direct control between agents.

Communication among agents is accomplished by means of task announce­

ment and the bid submission messages. The market mechanism will ensure

that tasks be allocated through negotiation between the manager

(supplier) and the contractor (buyers). By using the contract net

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

formalism to emulate the market, contract managers adopt an evalua­

tion function to rank their bidders; this evaluation function, for

instance, may be a function of the completion time needed by a bidder.

Another characteristic of the market metaphor for DPS is that the

relationships between agents are dynamically established. In a sense,

they are many-to-many relationships. An agent can be the manager of

one task and the contractor of another. Moreover, when a contract of

a task is established, a hierarchical relationship is initiated: the

manager acts as the superior to the contractors. The construction

of such relationships is referred to as "dynamic reconfiguration"

since the new relations between agents are added when new tasks are

allocated; a task is always assigned to the best agent available.

Thus, the market structure for distributed problem solving systems

introduces both efficiency and flexibility to the process of task

allocation.

Hierarchies represent the other structure suited for distributed

problem solving systems, especially when there are many agents in the

system and the amount of information exchanged is prohibitively large.

The basic idea of using hierarchical structure is to divide the system

properly into units, so that most of the required information flows

occur within the unit. The few information exchanges then are handled

by the set of unit managers.

Identifying the reduced information flows in hierarchies, Simon

[1981] observes:

"In fact the main advantage to be gained frcra hierarchic
authority is identical with that gained from using prices as
communicators: matters of fact can be determined at the
particular loci in an organization that are best equipped by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50

skill and information to determine them, and they can
then be communicated to 'collecting points' where all
the facts relevant to a specific issue can be put together
and a decision reached. Only a small part of the source
knowledge and information and expertise need be present
at the collecting points, and these points can themselves
be numerous and dispersed through the organization."

An extension of the hierarchical structure, referred to as the

modular-network structure, has been used for various distributed pro­

blem solving applications. The systems of this structure consist of

a group of modules, with each module being a hierarchy controlled by a

manager. Examples of this structure can be found in the computer net­

work system Cm*, in the cellular system in Shaw and Whinston [1983]

and in the distributed problem solving network (Corkill [1982]). The

underlying strategy is similar to the notion of "division of labor" in

organization theory - the objective of both approaches is to reduce

the task complexity. Two different mechanisms are integrated and used

to coordinate activities in this kind of organization: a coordinating

mechanism that operates through the set of managers and a coordinating

mechanism operating within each unit.

Shaw and Whinston [1983] incorporate the market mechanism into

such organizational structures. Specifically, the contract negotiation

process is used to allocate subproblems among the set of managers.

Once assigned, the manager of each unit in turn coordinates the agents

in its unit to complete the subproblem tasks.

2.3.5 Satisficing versus Optimizing

As has been discussed, in order to better utilize the resources,

an agent must spend more time computing and problem solving than

communicating and the system should be loosely-coupled. On the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51

hand, the necessity to keep global coherence among the agents demands

that their problem solving activities be well-coordinated to accommo­

date any interdependency or conflict; communication activities are

required to support this coordination. What is desired is a balance

between coordination and problem solving so that global coherence is

in effect and the combined cost of both activities is acceptable.

Thus, sometimes the emphasis is shifted from optimizing the performance

cf problem solving to achieving an acceptable performance level, in

order to avoid the costly searches for optimalities. This trade-off

is referred to as satisficing versus optimizing.

This satisficing principle is adopted by existing distributed

problem solving systems. In the contract net formalism, for instance,

the negotiation process can only achieve suboptimal task assignments.

There are two reasons that prohibit global solutions. First, the

negotiation process results in myopic assignments. Since the future

tasks are unpredictable, it may happen that all agents would get

better assignments (better matched to their expertise) if they would

wait longer so that more tasks are included in determining the assign­

ment. Second, it is a greedy method: each agent always selects the

highest ranked task; however, it may happen that the. group as a whole

would be better off (according to some kinds of welfare functions) if

some agents did not choose their highest ranked tasks. The primary

advantage of using the negotiation process is the efficiency in deter­

mining assignments, at the expense of optimalities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

2.3.6 Summary

Various strategies used in the distributed problem solving systems

discussed in Section 2.2 are summarized in Table 2.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 2.1 A Comparative Study of Four Distributed Problem Solving Systems

Heresay II Ether Contract Net DPS Net

Global
Coherence Yes Yes Yes No/Yes

Coordinating Meta-Level
Methods Self- Directed Externally-Directed Negotiation Controlled

Organizational Scientific Organizat ional
Structuring Hierarchical Communities Markets Self-design

Schedular
Task in the Contract Net Organizational
Allocation Blackboard Sponsors Protocol Blackboard

Loosely-Coupled; Loosely-Coupled;
Communicat ions Tightly-Coupled Tightly-Coupled Broadcasting Limited
Policies Shared Blackboard Broadcasting or Point-to-point Broadcasting

www.manaraa.com

54

CHAPTER 3
PLANNING IN A DISTRIBUTED ENVIRONMENT

3.1 Introduction

This chapter describes the methods for planning in a distributed

environment where a group of agents cooperate to generate plans auto­

matically. This approach is applied to the computer integrated manu­

facturing environment, where robots and other agents need to organize

their activities and complete operations for different jobs in the

system. The planning system is used to develop a course of actions

for the agents and to transform the system from the initial condition

to the desired goal conditions. The course of actions generated,

including the actions required for coordination, form the resulting

"plan". The planning system is then used to monitor the execution of

the plan and to modify the plan dynamically if required.

A general planning system that generates plans automatically

involves: representing the world, representing actions and their

effects on the world, searching for sequences of actions to achieve

certain goals, reasoning about interactions of actions that are taking

place concurrently, eliminating harmful interactions between concurrent

actions, and monitoring the execution of the resulting plan.

The addition of two elements - "resources" and "durations" - to

the standard STRIPS formalism is emphasized. Besides providing a

better description of the actions relevant for planning, both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55

descriptions can also be used to develop effective heuristics in the

plan construction. Resources can be used to identify the conflicting

actions in parallel subplans; the duration information is used in

deciding the precedence relationship between the conflicting actions.

If the planning is to be accomplished by several agents, referred

to as multi-agent planning, two approaches are plausible. The first

is the centralized approach, where a single planning agent generates

plans to be carried out by other agents and then hands out the pieces

of the plan to the relevant individuals. The second approach is a

decentralized one, where each agent concurrently constructs portions

of the plan; together, the collection of plans generated by individual

agents achieve the desired goal conditions.

This chapter will also address the decentralized, multi-agent

planning problem, commonly referred to as distributed planning. The

primary issue to be addressed is the coordination and synchronization

of the activities of individual planning agents to form an integrated

plan collectively. Since the plan is generated by the group of agents

in a decentralized fashion, the necessary interactions should be

carried out by communication activities among the agents. With this

approach, the. communication activities are treated the same as the

other activities in the domain. In other words, cooperating with other

agents is part of the expertise of each planning agent.

There is an issue that is important in distributed planning but

is ignored in this chapter: the decomposition of the original problem

and the assignment of subproblems to the group of agents, referred to

as "task allocation". This aspect of distributed planning is treated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

in Chapter 4, where a decentralized scheme similar to the market

mechanism is used to achieve task allocation. In this chapter, we

simplify the problem and assume that the original goal to be achieved

is a conjunction of several subgoals, with each subgoal assigned to

an agent.

This assumption is valid for computer-integrated manufacturing

systems. For example, the goal posted may be the completion of m

parts. Carried by mobile robots, each part requires different sequen­

ces of operations. A natural way of task allocation is to decompose

the goal into m subgoals; each subgoal corresponds to a part with a

sequence of operations. Thus, the stated planning problem is: how to

let each robot generate a plan for the part it carries, while the

multiple plans efficiently utilize the available machines without

conflicting in the activities of other robots.

Coordinating plan generations among multiple agents is similar to

managing concurrent processes in a multiprocessor operating system,

where numerous processes contend for access to the processors and other

system resources. The job of the operating system is to provide

synchronization and mutual exclusion among processes, so that none of

the processes will interfere with one another.

By adopting the synchronization and communication techniques

from the operating system field, the multi-agent planning is modeled as

concurrent processes. The interactions between single-agent plans are

handled by synchronization mechanisms using the message-passing

approach. The portion of the plan that uses a resource is treated as

the critical region - where mutual exclusion is ensured. This method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

of treating and analyzing a resource explicitly is adapted from the

method and viewpoint used in the SIPE system (Wilkins [1982]). In a

similar context, Nof et. al. [1980] propose a "manufacturing operating

system" to manage concurrent manufacturing activities; a variant of

the Petri net model is used to regulate the operational logic and thus

direct the flow of manufacturing processes among the processors.

The organization of the remainder of the chapter is as follows.

In the next section, the general knowledge-based planning method is

introduced and various issues concerning knowledge representation

methods and control strategies are addressed. In the following sec­

tion, the nonlinear planning approaches are discussed, focusing on the

handling of subproblem interactions. Existing nonlinear planning

systems, e.g., NOAH (Sacerdoti [1977]), NONLIN (Tate [1977]), DCOMP

(Nilson [1980]), SIPE (Wilkins [1982]) and DEVISER (Vere [1983]), are

compared. To illustrate the conflict-avoiding method used to maximize

concurrency between subplans, an example that applies nonlinear

planning method to the scheduling problem in a flexible manufacturing

cell is discussed. In the last section, distributed planning is

treated as an extension of the nonlinear planning approach, with syn­

chronization primitives inserted in single-agent plans for proper

interaction. A two-robot machine loading problem in a flexible manu­

facturing system is used to illustrate the distributed planning

approach.

3.2 The Knowledge-Based Approach to Planning

The primary objective of a planning system is to develop an

appropriate course of actions, among all the possible actions, that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

transform the system (referred to as the "world") from the current

condition to a desired goal condition. The course of actions generated

by this process is called a plan. Such a planning system is exempli­

fied by the robot planning system, where robot plans are generated by

selecting and synthesizing robot actions to achieve some stated tasks

in a given environment.

The planning 3ystem is organized in the form of a knowledge-based

system; that is, the knowledge is organized on three levels: data,

knowledge base, and control - as opposed to conventional programs

where the knowledge :'.s organized on just two levels: data and pro­

gram. In the knowledge-based planning system, the declarative knowl­

edge about the goals, the current situation of the world, and the

semi-finished plan constructed are stored in a database at the data

level. On the other hand, in the knowledge-base level is the domain-

specific, procedural knowledge. This knowledge is used to model the

behavior of the world, and is often given in the form of rules or

operators. Finally, in the control level is the knowledge about the

strategy of plan construction; it is related to the decisions of how

to select operators and when to apply them. This separation of con­

trol from the program is one of the major characteristics of knowledge-

based systems.

In a conventional computer program, knowledge pertinent to the

program and methods for utilizing this knowledge are all intermixed,

so that it is difficult to change the program. Using the knowledge­

base approach, the program itself is only a reasoning and control

mechanism; the system can be changed or remodeled by simply adding or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

subtracting rules in the knowledge base.

Because planning involves exploration of alternative sequences of

actions, a symbolic model of the real world, referred to as a world

model, is used to serve as an abstraction cf the environment as the

plans evolve. For any given planning problem, the initial condition

and the stated goal condition are both treated as instances in the

world model. The general function of a planning system, then, is to

construct a course of actions that transform one world model containing

an initial condition to a world model which matches the goal condition.

Thus, a planning system must have three basic components:

1) A world model. Represented as declarative knowledge at the data

level, this world model contains relevant descriptions about the

environment. This knowledge is usually about the properties of domain

objects (e.g., whether a machine is idle) or about the relationships

among the objects (e.g., whether a part is at a certain machine). The

most prevalent knowledge representation for the world model is the use

of first-order predicate calculus to describe properties, functions or

relations of objects (Nilson [1980]). In the planning system, corre­

sponding to every possible situation of the environment, the world

model is represented by a conjunction of the predicate formulas that

hold true in that particular situation. This conjunction of instances

of predicate formulas defines a "state" which describes the corre­

sponding situation in the real-world environment.

Some of the properties of objects and relationships among objects

may not change over time. For example, the capabilities of a machine

or the connectivity between two machines do not change with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

application of operators; these properties are called the invariant

properties of domain objects. This separation of state-changing

knowledge and invariant knowledge is analogous to the reasoning process

of human experts; the knowledge that changes with actions is stored in

a working memory, whereas the knowledge that remains unchanged is

stored in the long-term memory. The same kind of idea is applied in

representing tht world model.

The invariant properties of domain objects can be structuredly

represented by semantic networks of frame-based systems to take advan­

tage of their greater efficiency. In these representations, all the

relevant information is collected together and properties can be inher­

ited; accessing and manipulating the information can thus be facili­

tated. Further, constraints can be specified to regulate the possible

values of variable instantiations, reducing the feasible domain for the

solution-searching procedures.

2) An action model. This action model, represented at the domain-

specific knowledge-base level, formalizes the description of applica­

bilities of each action and its impact on the world model when applied.

An action is represented by a transformation from one state of the

world model to another state; each action is represented as an opera­

tor. Using the pattern-directed representation, each operator con­

sists of two components: preconditions and postconditions. The pre­

conditions are represented by a predicate calculus expression, if the

expression - the pattern - is matched by the state descriptions in the

world model, the operator becomes applicable. The postconditions

define the literals that are added or deleted by the application of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61

the operator, called an add list and a delete list, respectively.

When using the action model, the "frame problem" must be consid­

ered. The frame problem is the problem of specifying which conditions

in a state description should change and which should not, whereas

almost all conditions which hold true in a given state continue to hold

true after an action has been performed. Based on the assumption of

the STRIPS system, the action model assumes that all conditions that

are not indicated to be changed by the operator remain the same; that

is, all the changes in the world are accounted for by the postcondi­

tions of the applied operator. In our view, this assumption is valid

for the manufacturing environment where the effects of the manufac­

turing operations can be clearly defined. A counter example of this

assumption is the ill-designed block world, where stacking a block

onto a stack of blocks, for instance, might topple the whole stack of

blocks. Such a world is difficult for planning because of the

unpredictability of actions' effects.

While the operators are used to describe the actions relevant to

the problem domain, there could be other rules which provide good

judgement of actions to take when specific situations arise. These

are judgemental or empirical knowledge in the knowledge base, usually

acquired by learning from human experts. This type of knowledge is

excluded from robot planning systems, where actions are well-defined

and situations are tightly controlled. In the general computer

integrated manufacturing environment, however, the introduction of

these judgemental rules may reduce the complexities of the problems,

and result in satisficing solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

62

3) An inference engine, as the control unit. The major control

decision, exercised by the inference engine, is concerned with the

selection of action sequences which are based on the current state of

the world model and the decision of what action best leads to the

final state. Since the generation of an action sequence for a plan

typically involves extensive searches among alternative actions, the

inference engine produces a search tree along the plan-generation

process. The goal description is at.the root node, with instances of

operators defining branches, and the intermediate state defining the

nodes. The plan generation is then equivalent to a graph search

procedure; standard search strategies such as best-first or back­

tracking can be used to guide the search. Moreover, heuristic rules

are sometimes used to facilitate the search of operators. An example

of using heuristic rules is the "means-ends analysis". When an

operator is applied with this algorithm, the difference between the

new state and the goal state is determined and the operator that can

best reduce the difference is chosen. This "searching cycle" contin­

ues until the goal is satisfied in the new state. If the chosen

operator is not applicable, its preconditions are established as a new

intermediate subgoal. The algorithm is then applied in a recursive

fashion to achieve the subgoal by the same searching cycles.

To illustrate the strategies involved in means-ends analysis,

the search algorithm for generating a linearly sequenced plan is shown

in the following procedures:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

63

Procedure OPERATOR-SEARCH(G)

Input:

S: the initial state

G: the goal state

Output:

Plan: the resulting linearly-sequenced plan

Begin

1) Plan := M l

2) Until S matches G Do Begin

3) g := G - S /* unsatisfied goal */

4) op := operators whose add list contains a literal that

matches g

/* applicable set */

5) p* := nondeterministically select an operator from op

6) Plan := concatenate (Plan,p*)

/* Plan contains all operators used so far */

7) q := precondition formula of appropriate instance of p*

/* subgoal */

8) Call OPERATOR-SEARCH(q)

/* node expansion */

9) S := result of applying p* to S

End

End

This procedure is similar to the plan generation procedure used

in STRIPS (Nilson [1980]). Using the "means-ends analysis" planning

procedure, those components of G unmatched by S are treated as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64

difference between the goal state and the current state, denoted by g;

operators whose add list contain any literal in g are considered

relevant to reducing the difference and therefore are applicable. Many

operators may be applicable, but only one can be selected nondeter-

ministically.

For large planning systems, the number of alternatives to search

at each choice point can grow very fast with the size of the problem.

There are two basic methods for overcoming the combinatorial explosion

associated with the search in extremely complex planning problems.

These two methods are:

(1) to search the space more efficiently, or

(2) to transform the search space into smaller manageable chunks that

can be searched efficiently.

The planning strategies based on the first method include heuristic

search and constraint satisfaction; the strategies based on the second

method include hierarchical planning, problem reduction, divide and

conquer, and least commitment.

As a summary of this section, Figure 3.1 illustrates the basic

structure of a knowledge-based planning system.

3.3 Planning for Multiple Jobs: The Nonlinear Planning System

According to the knowledge-based approach discussed above, plans

are generated by selecting a sequence of actions to achieve the desired

goal state. The resulting plans are linearly sequenced, with strict

precedence ordering between the selected actions. This is the

simplest planning system - the linear planning system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

(Inference Engine)

CONTROL
STRATEGY

KNOWLEDGE BASE

KNOWLEDGE RULES
OPERATORS
INFERENCE RULES

PLANS
PARTIAL PLANS
CURRENT SITUATIONS
GOALS

DATA BASE

Figure 3.1 Basic Structure of a Planning System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

66

Many planning systems have had the ability to break a problem

into subproblems, that is, to take advantage of the "divide and con­

quer" strategy in generating plans. A common practice is breaking the

original goal into a set of subgoals, developing linearly-sequenced

plans for the individual subgoals, and synthesizing the plans for sub­

goals into the final plan. In contrast, to the linear planning, how­

ever, the actions in this final plan may not have precedence relation­

ships. The plan, no longer linearly sequenced, is referred to as a

"nonlinear plan". This section is an attempt to review important

nonlinear planning techniques that have been developed and to provide

an overview of the planning approaches we will use in later sections

in dealing with the manufacturing environment.

3.3.1 Previous Planning Systems

In nonlinear planning, if the subproblems are independent with

each other, then, in principle, the plan-generation processes for sub­

goals can be parallel. Two segments of a plan are parallel if the

partial ordering of the plan does not specify any particular precedence

relationship; the total duration of such a plan is often reduced.

Parallelism is considered beneficial for the planning process because

of the corresponding efficiency, which is the highest when subproblems

are completely solved in parallel. In most of the cases, however, the

actions of one plan interacts with the actions of other plans, causing

"conflicts" between these linearly-sequenced plans and disrupting the

correctness of the plan. The nonlinear planning system needs to take

these interactions into account and take measures to avoid conflicts

between parallel actions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67

The concept of nonlinear planning was first implemented in the

NOAH system developed by Sacerdoti [1977]. NOAH performs planning with

interfering conjunctive goals by considering the plan steps as parallel

for as long as possible. Where interactions between plan steps are

detected, a critics mechanism is used to sequence the steps so that

conflicts are avoided. If an action for one goal deleted an expression

that was a precondition of a conjunctive goal, then the action with

the endangered precondition would be.performed first by imposing a

precedence constraint between these two actions. The resulting final

plan is a partial ordering of operators, referred to as the procedure

network. Nilson [1980] uses a simplified version of NOAH, called the

DCOMP method, to illustrate nonlinear planning. In DCOMP, planning

operators are at a single level as opposed to the hierarchical struc­

ture used to define operators in NOAH.

Tate [1977] extends the techniques used in NOAH and develops a

planning system called NONLIN. While capable of solving some problems

that are beyond NOAH's capabilities, NONLIN also attempts to use the

nonlinear planning method to aid the project management technique in

operations research. The partially ordered network of actions gener­

ated by the NONLIN system can be used to automate the process of

specifying consistent jobs and identifying the precedence relation­

ships between jobs in the construction of the project network. Tech­

niques such as critical path analysis can then be applied to establish

schedules and allocate resources. NONLIN differs with NOAH in two

aspects:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68

1) N O N L IN is capable of backtracking by keeping the backtracking

points in the. searching for actions.

2) By ignoring the effects of actions which were not relevant to the

application of latter operators, NONLIN can search more efficiently.

For every operator that appears in the plan, a "goal structure"

is used in NONLIN to keep a list of operators whose application could

make the precondition hold. This allows NONLIN to recognize relevant

interactions and to be sensitive to important effects of operators in

resolving conflicts between actions.

The SIPE system developed by Wilkins [1982] is a domain-independ­

ent planning system that generates hierarchical, partially ordered

plans. Unlike other nonlinear planning systems, SIPE is designed to

also allow interaction with users throughout the planning and plan

execution processes. While most planning systems use a single repre­

sentation for their world model, SIPE incorporates the frame-based

system, for its efficiency, to represent the invariant properties of

domain objects. Predicate calculus is used, for its representational

power, to represent state-changing properties. Thus, the number of

literals in the state descriptions is reduced and pattern-matching is

made more efficient.

The second contribution of SIPE is its ability to reason about

resources. The representation of operators includes the specification

of the object employed by the corresponding operator as a resource.

When an operator is applied, the planning system automatically checkn

for the availability conditions of the required resource and avoids any

possible conflict. The declaration of a resource increases the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69

representational power of an operator and facilitates the detection of

conflicts between operators.

The third important aspect of SIPE is its use of constraints to

restrict the possible values of domain variable instantiation, enabling

it to be capable of constructing partial descriptions of unspecified

objects. Incorporating the constraint satisfaction technique in the

searching of the solution enables SIPE to carry out more efficient

planning.

DEVISER (Vere [1983]) is a nonlinear planning system that accounts

for time and durations explicitly. Parallel plans are synthesized

to achieve goals with imposed time constraints; actions and events may

have computable, deterministic durations. The final plans generated

by DEVISER are partially ordered networks of activities, with a dura­

tion and a start time "window" presented with each activity.

A window specifies the upper and lower hound on the time when an

activity may occur. Windows for activities are computed dynamically

during plan generation and are derived from goal windows by the consid­

eration of the durations of interfering activities and the times of

occurrence of prespecified events. Constraints on the window bounda­

ries must be satisfied when two nodes are sequential or consecutive;

if a time constraint is violated, the planner must backtrack to search

for activities consistent with the time constraint.

An alternative approach can be found in Bullers et. al. [1980],

where they apply the problem reduction approach to perform planning and

control in the manufacturing domain. Predicate logic and theorem

proving techniques are used in deriving manufacturing steps in the

i ynamic environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

•3.3.2 An Overview of the Proposed Method

The planning method we will develop for the computer integrated

manufacturing environment has characteristics resembling those of the

systems previously discussed. We shall briefly present its features

in this section and then illustrate the method in more detail by

solving an example problem in the next section.

Based on the nonlinear planning methods developed in NOAH and

DCOMP, our method begins by constructing a linear plan for each sub­

goal. However, instead of testing the preconditions and the postcondi­

tions of the operators to decide their interactions, we will use

resources as the basis for detecting harmful interactions. Since most

of the conflicts between parallel plans in the manufacturing environ­

ment are related to resources, our method is more explicit and easier

to use.

Although the idea of explicitly declaring resources was originated

by Wilkins' SIPE [1982], our method differs with his in one important

aspect. SIPE's embedded planner checks on the resources availability

when operators are applied, and the operator will not be used at all

if the resource is not available. Our method is a greedy algorithm

in the sense that a linear-sequenced plan is generated for each sub­

goal, regardless of the resource availability, and then use precedence

constraints to maintain the correctness in resource accesses.

As with DIVISER (Vere [1983]), our method uses the duration as

an important description in the planning, especially in deciding

precedence constraints. However, by emphasizing resources used by

activities, the resulting plan network is more expressive for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

managerial analysis, e.g., sensitivity analysis like "what if a certain

resource is not available."

To minimize the total time taken by the resulting plan, we use

a plan generator to decide the best ordering among the activities. The

plan generator runs the activities in the way they are arranged by the

linear planner, with each operator scheduled into an event-list. An

operator is blocked in a queue if the resource it requests is occupied,

thus, a precedence constraint must be established in the plan between

the operator currently using the resource and the operator which is

blocked; the former is, then, the predecessor, the latter is the

successor. The partial ordering thus constructed will minimize total

duration of the plan.

3.A An Application: The Sequencing and Scheduling Problem in a
Manufacturing Cell

3.4.1 The Problem

We shall now illustrate the application of the planning method

presented above to a sequencing and scheduling problem in a flexible

manufacturing cell.

A manufacturing cell is a flexible manufacturing system (FMS) and

is usually a modular unit in a large-scaled computer integrated

manufacturing system. A typical manufacturing cell has several

computer-controlled machines and robots, with an automatic handling

system (e.g., the linear table in Figure 3.2) transporting parts

between machines. Such integrated systems are characterized by their

flexibilities in making parts and their capabilities of performing a

wide range of operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

loading robot

cnc
lathe

linear
table

cnc mill

Figure 3.2 The Organization of a Manufacturing Cell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

73

The problem to be solved is the following. A certain number, say

N, parts are assigned to the manufacturing cell; each part requires a

given set of linearly-sequenced operations to be performed by the

three machines. Since the machines have varying efficiencies for

different operations, each part is routed among the machines in the

hope that every operation it needs is performed by the most appropriate

machine available.

The objective of the problem is to schedule the N parts concur­

rently by developing a schedule for each part traveling among the

machines; the makespan - the duration taken for completing all the

required operations - should be minimized, while avoiding any conflicts

arising from assigning parts to a busy machine.

The problem of scheduling these parts is treated as the problem

of generating plans for all the parts. An N-part-M machine scheduling

problem can be decomposed into N subproblems, with each subproblem

defined as the routing of one part. The nonlinear planning method

discussed in Section 3.3 can thus be utilized to generate a plan for

the N subproblems; the primary "interactions" between these subprob­

lems are their sharing of the M machines. The objectives of the

scheduling problem - to minimize makespan and to avoid conflicting

assignments - can be translated to the criteria of the plan generation:

to maximize concurrency and to avoid harmful interactions among the

subplans. Before discussing the planning system, the parameters of the

problem are introduced.

For this particular example, the flexible manufacturing cell, as

shown in Figure 3.2, consists of three computer-controlled machines,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

as denoted by MACH 1, MACH 2 and MACH 3 In Table 3.1.

Table 3.1 The Machines

CNC lathe MACH 1

Welding robot MACH 2

CNC mill MACH 3

Suppose there are two parts entering the system that need to be sched­

uled; these parts require different sequences of machining operations,

as listed in Table 3.2 and Table 3.3 below:

Table 3.2 The Operations

OP 1 surfacing

OP 2 welding

OP 3 finishing

Table 3.3 Operation Requirements of Each Part

Part 1 (PTl) 0P1, 0P2, 0P3

Part 2 (PT2) 0P1, 0P3

Each machine is capable of performing a different set of opera­

tions, while some operations may be performed by several machines.

The operations each machine is capable of performing are shown in

Table 3.4. The machines perform the set of operations with varying

speeds, as reflected in the average time taken for the operations on

each of the machines shown in Table 3.5. Finally, the average time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

Table 3.A The Capabilities of Machines

MACH 1 0P1, OP3

MACH 2 OP 2

MACH 3 0P1, OP3

Table 3.5 The Average Operation Times (unit)

“■'''''--^OP
MACH'~'''''~̂ 1 2 3

1 3 7

2 . 6

3 8 _ 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76

to transport the parts from one machine to another through the linear

table and the time for the robot to load or unload the parts are shown

in Table 3.6 as follows.

Table 3.6 Average Transfer and Load/Unload Time

Average Transfer Time (Linear Table) 2

Average Load/Unload Time (Robot) 1

3.4.2 The Knowledge-based Planning System

Using the knowledge-base approach, the expert planning system is

organized on three levels: data, knowledge, and control. A world

model at the data level is used as a description of the environment of

the manufacturing cell. A set of pattern-invoked operators in the

knowledge base is used to model the actions to be planned. An infer­

ence engine applies the control knowledge to search for the best course

of actions in constructing the plan while reasoning about resources,

interactions, and precedence orderings.

In the remainder of this subsection, we shall address the

necessary knowledge at the three levels of the expert planning system

to solve the stated problem.

3.4.2.1 The Declarative Knowledge in the Database

There are three kinds of knowledge stored in the database: the

world model, task descriptions, and the plans. The world model used

to describe the environment of the manufacturing cell is shown in

Table 3.7, where first-order predicate literals are used for knowledge

representation. This set of predicate literals have different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77

Table 3.7 The Set of Predicates

IDLE(M,t) : Machine M is idle at time t
MACH-PT(M,OP4*T»t) : Machine M begins operation OP on part PT at time t
FENISH*OP(M,OP,PTft) : Machine M completes operation OP on part PT at time t
SAME(M,M’) : Machine M is machin e M’
DIFFERENT(M.M’): Machine M is a machine different from machine M’
MACH-OP(M.OP) : Machine M is capable of performing operation OP
PT-FIRST-OP(OPJPT) : operation OP is the first operation on part PT
PT-NEXTOP(OP,OP’JT) : Operation OP’ should be performed on part PT

immediately after operation OP.
DONE(PT,t): All operations on part PT are completed at time t
TOOL(M,OP,t): The tool for operation OP is available to the machine M at time t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

characteristics In terms of the properties or relations they are

describing. There are three types of literals:

1) Invariant literals. This set of literals would not be affected

by the application of operators. Examples of these literals are:

MACH-OP, PT-FIKST-OP, PT-NEXTOP, etc.

2) Functional literals. They are used to describe functional rela­

tionships. Examples are SAME, DIFFERENT, LE, etc.

3) State-descriptions literals. These literals change with the

applications of operators and are the state-changing elements of

the world model. Examples of this type of literals include IDLE,

MACH-PT, FINISH-OP, and DONE.

There is another kind of knowledge stored at the data level: the

representation of the generated plan by a partially ordered network of

activities. The plan representation is used to monitor the execution

of the planned activities; if there are deviations between the condi­

tions specified by the plan and the conditions in the real world, the

planning system should take measures to modify the rest of the plan.

The plan representation can also be used to accommodate dynamic­

ally changing environments. For instance, in the manufacturing

example, new parts entering the system may request to be scheduled

while the existing parts in the system are not completely done. By

monitoring the progress of the execution, the planning system is

capable of detecting the current actions that remain to be executed.

One approach is to leave the remaining plan intact, thus, generating a

plan for the new part that does not conflict with the existing plan.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

3.4.2.2 The Domain-specific, Knowledge-base Level

A set of operators, stored in the knowledge base, are used to

represent actions the system may perform. Each operator contains

information about the object that participates in the actions, what

the actions are attempting to achieve, the effects of the actions when

they are performed, and the conditions necessary before the actions can

be performed. The action formalism represented by such an operator is

specified as follows:

<action - name> clist - of - arguments>

<Precondition> : <list-of-precondition-literals>

<Add list>

<Delete list>

<Resource>

<list-of-add-list-literals>

<list-of-delete-list-literals>

<resource-name>

<Duration> : <length-of-duration>

Besides the standard STRIPS formalism, which specifies an action

by its add list, delete list, and preconditions, we have included two

more descriptions for each action - the "resource" used during the

action, and the "duration" of the action. There are two advantages to

this addition. One is the increased representational power of the

action model; the other is the facilitation of conflict detection and

conflict resolution.

One of the major functions of the planning system is the effective

coordination of resource usage. Resources are to be employed during a

particular action and then released; reasoning about resources is

essential to ensure that only one action is using the resources at any

given time. For the manufacturing environment, the major forms of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

resources are machines, robots, and human operators.

If the resource used by an operator is not represented explicitly,

then resource availability would have to be recognized solely by the

preconditions and postconditions of the operators. Stating the use of

the resource explicitly, on the other hand, is a way of saying that the

resource has to be available before the operator can be applied. It

is easier for the planning system to reason about resource availabili­

ties by the explicit resource declaration than by checking with the

various pre- and postconditions of operators. This point will be

further discussed in Section 3.A.2.3.

The duration information is important because the constraints

and the goals of planning problems in the manufacturing domain are

often related to time; for example, the due date of a job, the machine

time available, etc. The set of operators is shown in Table 3.8. »

Furthermore, planning a manufacturing process usually includes

the objective that the total duration of the process be minimized.

This can only be achieved if the duration of each action is represented

explicitly. As will be explained in Section 3.4.2.3, the durations

are used to decide the ordering between the conflicting actions and to

help achieve a minimized-duration plan.

3.4.2.3 The Control System

At the control level, an embedded inference engine is used to

develop and organize the necessary actions to accomplish the goals.

Since, in this example, there is a natural decomposition of the goal

into M subgoals, with each subgoal able to generate a linear plan for

the corresponding part. The generation of plans can be accomplished

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

81

Table 3.8 The Set of Operators

ENTER(PT , t) : Part PT enters the system at time t
Precondition : PT-FIRST-OP(PT.LOAD)

IDLE(DOCK,t)
Add-Iist : MACH-PT (DOCK, LOAD, PT, t)
Delete-Iist : IDLE(DOCK, t)
Resource : DOCK
Duration : 0

EXECUTE(M, OP, PT, t) : Execute operation OP on part PT on machine M
at time t.

Precondition : MACH-PT(M, OP, PT, t)
TOOL(M, OP, t)

Add-Iist : FINISH-OP(M, OP, PT, t+6/)
Delete-Iist : MACH-PT(M, OP, PT, t)
Resource : M
Duration : hi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82

Table 3.8, continued.

TRANSFER(M, M\ PT, t) : Transfer part PT from machine M to machine M’
at time t.

Precondition : FINISH-OP(M, OP, PT, t)
DIFFERENT(M, M’)
PT -NEXT OP(OP, OP, PT)
MACH-OP(M\ OP’)
IDLE(M\ t)

Add-Iist : MACH-PT(M\ OP’, PT, t)
IDLE(M, t)

Delete-Iist : FINISH-OP(M, OP, PT, t)
IDLE(M’, t)

Resource : hr
Duration : 2

NEXTOP(M, OP, OP’, PT, t) : Perform operation OP’ on part PT followingoperation OP on the same machine M.
Preconditon : FINISH-OP(M, OP, PT, t)

PT-NEXTOP(OP, OP, PT)
MACH-OP(M, OP’)

Add-Iist : MACH-PT(M, OP, PT, t)
Delete-Iist : FINISH-OP(M, OP, PT, t)
Resource : M
Duration : 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

83

Table 3.8, continued.

UNLOAD(M, DOCK, FT, t): Unload part PT from machine M onto the unloading
dock DOCK at time t.

Precondition : £DLE(DOCK, t)
PT-NEXTOP(OP, NIL, PT)
FINISH-OP(M, OP, PT, t)

Add-Iist: MACH-PT(DOCK, 'unload', PT, t)
Dclete-Iist ; IDLE(DOCK, t)

FTNISH-OP(M, OP, PT, t)
Resource : M
Duration : 3

EXIT(PT, t, 8?) : Part PT which is unloaded at the unloading dock DOCK at time t leaves the system at time t+S/.
Precondition : MACH-PT(DOCK, 'unload', PT, t)

TOOL(DOCK, 'unload', t)
Add-list: DONE(PT, t +8r)

IDLE(DOCK, t+8r)
Delete-list : MACH-PT(DOCK, 'unload', PT, t)
Resource : Dock
Duration : 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

by the following operations:

1) Generate a linearly-sequenced plan for each subgoal; these plans

are called "subplans

2) Identify problematic interactions between the actions of parallel

subplans.

3) Linearize the conflicting actions; construct precedence constraints

between the pairs of conflicting actions to avoid harmful inter­

actions.

3.4.2.3.1 Plan Generation for Subproblems

The generation of linear plans can be carried out by any STRIPS-

like plan generation system. For example, the recursive OPERATOR-

SEARCH algorithm introduced in Section 3.2 can be used for this

purpose.

The planning system uses a backward-chaining method in its

searching for the best actions, it works backward from the goal state

to find a sequence of actions that could produce this goal state from

the initial state. The process of plan generation, then, can be

viewed as finding the solution path in a search tree. The root of the

tree is the goal state, instances of operators defining the branches.

The solution path, which starts with the root (the goal state) and

leads to the leaves (the initial state), defines the plan. The search

trees generated by the planning system for part 1 and part 2 are

depicted in the Appendix (see Figures A.l and A.2). The resulting

linearly sequenced plans are shown in Figures 3.3 and 3.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

operation : opl, op2, op3

pl ENTER

p2 EXECUTE(LOAD,DOCK)

p3 TRANSFER(D0CK,M1)

p4 EXECUTE(Ml,opl)

P5 TRANSFER(Ml,M2)

p6 EXECUTE(M2,op2)

p7 TRANSFER(M2,M3)

p8 EXECUTE(M3,op3)

p9 UNLOAD(M3.DOCK)

plO EXIT

Figure 3.3 Linearly Sequenced Plan for PT 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

86

operation : opl, op3

ql ENTER

q2 EXECUTE(LOAD,DOCK)

q3 TRANSFER(DOCK,Ml)

q4 EXECUTE(Ml,opl)

q5 TRANSFER(Ml,M3)

q6 EXECUTE(M3,op3)

q7 UNLOAD(M3,DOCK)

q8 EXIT

Figure 3.4 Linearly Sequenced Plan for PT 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

3.4.2.3.2 The Conflict-Detection Mechanism

After a linear plan is constructed for each subgoal, the next

step is used to identify problematic interactions between parallel

actions. The primary cause of such interactions is the potential con­

flicts in using resources. There are two possible approaches in this

step. The first approach is based on the method used in NOAH

(Sacerdoti [1977]) and DCOMP (Nilson [1980]); the interaction-detection

mechanism, called the "critic", of the planning system identifies

potentially harmful interactions between planning steps by checking

the effects of the operators involved. If the preconditions of an

operator to be applied is deleted by an operator previously applied

by the planner, the current operator has to be delayed until its

deleted preconditions are added back by some other operator applied

later. Thus to test the potential conflicts for an operator, two kinds

of information are crucial: those operators in the plan that can

delete its preconditions, and those operators in the plan that can

result in its preconditions; the former is recorded in an "adder

list", the latter is recorded in a "deleter list". These two lists

are parts of a table kept by the planner, referred to as the table of

multiple effects (TOME), as shown in Table 3.9.

This table can be used to detect conflicts systematically; for

instance, if the plan developed so far is as follows:

pi p2 p3 -+ p4 ?

-+ ql -> q2 ?

According to the linearly-sequenced plan already built, the next

operator to apply is q3. However, by checking with Table 3.9, one of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Ta
bl
e

3.9

The

Ta
bl
e

of
Mu
lt
ip
le

Ef
fe
ct
s

(T
OM
E)

88

OHa

ui
§g

d SJa x

N
us Q r ^ i

Ct rCJ
s

ID
E

I
(D

O
C

cr
m
cr

bC
oo o O I
cr H i

i s si s i s

i s - i s i i
a
Ha

or—Ia

toa
d h d q tinn OS ox OX ^ <£o* m w h w m w a a

dp ds d:in q x o S Q X J |
O, M w H w MW j |

Sf |C7* I

•d-a

i s i s i s

us
m Q Ocr m w

p.1 /-S
£s!

a m w

h!
as

(4•H *J►J (0•H
M M4)u u 4) 0) M *00) xj
Q <

S3

US

iu 8 d
Q O
M w

o
M

US
*a

orH

1 M
a

CO
a

nJwo
/-s
us r>» 00

d
a
s
w

cr cr

o
M

M
O*

CO
cr

mJo Q

c4J O W M M W U H ■H
0) 13•H 4) C M *J O QJ o <BH <1 tl OJ U< o a
< o a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

89

the elements in its deleter list, p3, is in a parallel branch; thus,

there is a risk of conflict between these two operators' actions if we

do not restrict their invocations. By checking with Table 3.9 again,

we find that p5, which is on q3's adder list, will result in the pre­

condition which q3 requests. Therefore, q3 must not be applicable

until p5 is finished; otherwise, there would be a conflict. This can

be explicitly represented by imposing a precedence constraint stating

that q3 be a successor of p5, denoted by p5 ■+ q3. Thus, the plan has

a new precedence ordering between p5 and p3:

pi p2 -+ p3 p4 -+ p5 -*- p6 ?

-*■ ql -+ q2 -»■ q3 ->■ ?

By observing the table of multiple effects shown in Table 3.9, we

find that in the manufacturing environment such as the one in this

example, the major cause of conflict is machine usages. We also find

the predominant constraint used in the conflict-resolution step to be

the restriction that the operators requiring the same machine cannot

be in parallel branches. The preceding approacn using TOME is just

one way to construct this constraint. Next, we shall attempt to use

resources as a basis to recognize and avoid conflicts between actions.

As will be seen, resource information makes the task of conflict

detection easier.

3.4.2.3.3 Reasoning About Resources

In a broader sense, a resource can be defined as the object used

by the corresponding operator during its application and cannot be

shared by more than one operator. Declaration of a resource by an

operator imposes the condition that the resource must be available for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

90

the operator to be applicable and that the resource will be occupied

by the action - as represented by that operator - during its applica­

tion.

Using the resource information, the first step to detect problem­

atic interactions is to identify critical sections of each subplan.

A critical section is defined to be a set of consecutive operators

that must be executed as an indivisible planning step. When consecu­

tive operators in a subplan declare the same resource for their

actions, these operators form a critical section.

A critical section in a plan has exclusive access to the resources

its operators require; operators in another section that require the

same resource may not have access until the resource is released.

This mutually exclusive execution of critical section is called mutual

exclusion. This concept is the essence of our approach to detect

conflicts. In the manufacturing domain, critical sections and mutual

exclusions can be used to regulate that consecutive operations in a

machine cannot be interleaved, which appears to be appropriate.

By observing the resources used by each planning step, as shown

in Table 3.10, there are seven critical sections:

[pl,p2], [p3,p4], [p5,p6], [p7,p8,p9]

[ql,q2], [q3,q41, [q5,q6,q7] .

The operators in the set listed above are consecutive operators that

use the same machine.

Next, those critical sections in parallel subplans that require

the same resource must be declared mutually exclusive. The set of

mutually exclusive pairs are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Ta
bl
e

3.1
0

Re
so
ur
ce

De
cl
ar
at
io
ns

of

Pl
an
ni
ng

St
ep
s

91

o\ coP. a

ooP coa oocr

r>.P. ooa cr coa

vOP. csa vPcr coa

inP. csa U1cr coa

p . cr

COa COcr

csp.
ooQ cscr

Uoo
a

a.
usaoQ

uocr q

a)a
p u
0 p♦H oU (0a 0)
< M

a)u
P u
O p•H o4J COu a)
< u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

92

[pl,p2] : [ql,q2]

[p3,p4] : [q3,q4]

[p7,p8,p9]: [q5,q6,q7].

If the conflict-detection mechanism in Section 3.4.2.3.2 is used, an

operator Is blocked if one of its deleter is in a parallel branch of

the plan. The operator is reactivated when an operator in its adder

list is applied. Similarly, by using resource information, the poten­

tial harmful interaction of an operator is detected if another opera­

tor in a mutually-exclusive critical section is in a parallel branch

of the plan. The current operator then has to wait until the resource

is released.

This mutual exclusion between critical sections that require the

same resource can be enforced by semaphors as used for concurrency

management in operating systems. A semaphor is an integer variable *

shared by subplans; each resource is associated with one semaphor.

The value of a semaphor, either zero or one, is used to signal the

status of the resource. When the semaphor is one, the resource is

available; when the semaphor is zero, the resource is occupied. Using

the concept of this semaphor mechanism, a conflict-detection procedure

based on resource reasoning can be as follows:

Pr >r. edure CONFLICT-DETECTION(P)

/* to check if an operator P can be applied */

Begin

R := RESOURCE(P)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93

If S(R) = 1 Then /'* resource is available */

Applicable := TRUE

S(R) = 0

Else /* resource is busy */

Applicable := FALSE

Re tu r n (App 1 ic abl e)

End

To implement mutual exclusion in critical sections of the sub­

plans, each critical section is preceded by a P operation and followed

by a V operation on the same semaphor. Given a semaphor S, P(S)

delays until S > 0 and then executes S := S - 1; V(S) executes

S := S + 1; the semaphor is always initialized to one. Since the

mutually exclusive sections share the same semaphor, only one of the

sections can get access to the critical region. The blocked operator

will wait in a queue associated with that semaphor until the resource

is released. Then the semaphor turns to one again and the waiting

operators can start using the resource. The parallel subplans of the

problem using semaphors to regulate resource accesses are depicted in

Figure 3.5.

The advantages of using the semaphor mechanism to regulate the

usage of resources are its simplicity and correctness in keeping

mutual exclusion. The primary usage of this kind of synchronization

is to monitor the execution of a plan. The insertion of P, V opera­

tions in the plans can block an operator from using an occupied

resource during the execution of the plan. However, if we want to

construct a partially ordered plan in advance, so that we can apply

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94

e'­er

a

NV)
cu
i
c/T* ©w f-4 > *

t 1

*
t >

a tOs
t a ,

^ t
£ *

roU)

VOcr
mcr

wST
t

✓—*»
rHCOw>

t

cr
tcncr
co
04

CO
GO

•HUCOMQJao
co

•H■U
N

•H
CO
CaGP»cn

•H
CO
G(0rH

Pui

t »

£
r~
a

>

»

t

C/2
N
a cu

t »
'n '~̂ A O. Ui
t > ”

^ t
C/2
s r *

CO
>
♦fScr
rH oocr o’
♦ f
C/l™
0- >

CO
Umcu
m
co

OJM300
•rHfa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

95

analytical models based on the partially ordered network, other tech­

niques are needed.

In the following section, we shall discuss a procedure for decid­

ing the precedence ordering between mutually exclusive operators. A

partially ordered network of operators/actions is produced by this

procedure. Because parallelism is maximized during the construction,

this partially-ordered network, together with the duration information,

provides us with a schedule that, for the example, has the shortest

total duration.

3.4.2.4 Constructing the Partially-Ordered Plan

In Section 3.4.2.3, two approaches to detect interactions are

explored; one is based on the use of a table of multiple effects in

identifying potential conflicts, the other is based on resources.

Once the problematic interactions are identified, these conflicts

should be avoided by imposing a sequential ordering between the con­

flicting operators/actions; the sequential ordering thus imposed is

referred to as the "precedence constraint" between the two actions.

After a problematic interaction between two actions is identified,

a decision is needed regarding the direction of the precedence con­

straint. As far as the "feasibility" of the plan is concerned, any

one of the two actions can precede the other, as long as there is no

overlap in the resource utilization. However, to achieve the objective

of maximizing parallelism, or, equivalently, minimizing the total

duration, the planner needs to identify the action which will take

place earlier than the other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

96

A procedure similar to the discrete simulation method is used to

dynamically decide the precedence relationship between two conflicting

actions. The underlying principle - based on the least commitment

strategy - is not to impose any precedence constraint unless it is

absolutely necessary, so that the parallelism among the subplans is

maximized. A plan generator, called PLAN-AHEAD, is used to decide the

ordering of actions in parallel plans. The information about resources

and duration of actions is crucial to the inference engine in making

these decisions.

The basic idea of the plan generator is as follows. The plan

generator has a global clock and an EVENT-LIST. The global clock,

represented by TNOW, is updated discretely to the time when the next

event occurs. All the future events that are to occur are scheduled

in a "calendar", represented by a list called EVENT-LIST.

The EVENT-LIST is ordered by the occurrence time of its element;

each element in the EVENT-LIST is an operator to be applied next in

one of the subplans. In other words, the first element on the EVENT-

LIST contains the information of what the next applicable operator is,

and when it will become applicable. After TNOW is updated to that

time, the CONFLICT-DETECTION routine is used to check if there's any

interaction that prevents this operator, p*, from being applied. Two

situations can happen:

1) If the resource requested by p* is occupied, then p* is put into a

queue corresponding to that resource, p* will stay in the queue

until the current occupant, p', leaves the resource, p* will

become applicable again at that time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97

2) If the resource is available, p* is applied; its successor in the

linear subplan is then scheduled on the EVENT-LIST to be applicable

when p* is finished. The event-occurrence time of the successor is

calculated by the sum of TNOW and the duration of p*. The queue

corresponding to the resources used by p* is checked to see if any

operator is blocked by p*. If there is, say a r, waiting for the

resource, then r becomes applicable and a precedence constraint is

imposed between p* and r. p* must precede r.

The plan generator can be implemented in a PASCAL-like procedure,

as follows.

Procedure PLAN-AHEAD

INPUT: N linearly-sequenced plans; the first operator of plan i is

°i
OUTPUT: Plan: a partially ordered network

Begin

(1) Initialization: TNOW := tO; Plan := Nil;

(2) Put (01,TN0W) on the EVENT-LIST, i=l,...,N

(3) While EVENT-LIST <> Empty Repeat

Begin

(4) (p^T) := the first entry on EVENT-LIST

(5) w := PREDECESSOR(p1)

(6) If (RESOURCECp1) <> RESOURCE(w)) Then

Begin /* the resource used by plan i is released */

(7) _If queue (RESOURCE(w)) is nonempty Then

Begin /* reactivate the blocked operator */

(8) r := the first operator on the queue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

98

(9) Plan := SEQUENCE(w,r.Plan)

(10) Plan := SEQUENCE(PREDECESSOR(r).r.Plan)

(U) Put (SUCCESSOR(r) ,TNOW+DURATION(r)) on the EVENT-LIST

End

End

(12) Call CONFLICT-DETECTION(p1)

(13) J[f_ applicable Then

Begin /* p^ is applicable */

(14) TNOW := T

(15) p* := p1

(16) Plan := SEQUENCE(w.p*.Plan)

(17) Put (SUCCESSOR^*) ,TNOW+DURATION(p*)) on the EVENT-LIST

End; Else /* p* is blocked */

(18) Put p^ on a queue(RESOURCE(p*));

End /* Repeat */

End /* PLAN-AHEAD */

In the PLAN-AHEAD procedure, several built-in functions are used

by the simulator and they are explained below:
i iPREDECESSOR(p): the operator which precedes p in subplan i

i iSUCCESSOR(p): the operator which follows p in subplan i

SEQUENCE(w,r.Plan): Plan is a partially ordered network of

operators, w precedes r in Plan when r is added to Plan; if

r is already in Plan, only the predence constraint is

added.

QUEUE(S): a FIFO list which contains operators waiting for the

resource S to be available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

99

DURATION(P): the duration specified in operator P.

RESOURCE(P): the resource used by operator P.

The flow-chart of PLAN-AHEAD is shown in Figure A.3 in the Appendix.

To illustrate how PLAN-AHEAD works, we shall now use the procedure

to solve the example problem.

As shown in Figures 3.3 and 3.4, the linearly-sequenced subplans

for parts 1 and 2 are the following.

Part 1: -»■ pi -*■ p2 ->• p3 ->■ p4 p5 -> p6 -*■ p7 -»■ p8 -► p9 -*• plO

Part 2: -*■ ql -*■ q2 q3 -► q4 -► q5 -*■ q6 + q7 -*■ q8

Now, we want to use the plan generator to decide the necessary

precedence ordering between the actions in the two parallel plans.

The objective is to avoid any potential conflicts in machine accesses.

Also, the total duration should be minimized.

The planning cycles generated by PLAN-AHEAD are illustrated in

Table 3.11; the global clock, the contents of EVENT-LIST (E-L), the

queues for resources, and the ordering of the plan constructed up to

that moment is shown in each cycle to verify the correctness of the

plan generator.

The plan-generation process can also be represented by a bar

chart, as depicted in Figure 3.5. The plan is placed on a one­

dimensional chart with time as the only dimension. The duration of

each operator is explicitly represented. The advantage of using this

chart is that, by examining it, the concurrency or the lack of it

among the subplans can be easily observed.

There is one more thing about the plan generator that needs to

be pointed out. In step(3) of the procedure PLAN-AHEAD, the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100

Table 3.11 Planning Cycles Generated by PLAN-AHEAD

1. TNOW = 0 E-L : (p i , 0) , (q l , 0)

Plan : Nil

2. TNOW = 0 E-L : (q l , 0) , (p2 , 0)

Plan : p i

3. TNOW = 0 E-L : (p2 , 0) ; queue(DOCK) : q l

Plan : p i

4. TNOW = 0 E-L : (p3 , 1) ; queue(DOCK) : q l

Plan : p i -» p2

5. TNOW = 1 E-L : (p4 , 3) , (q l , 3)

Plan : p i -* p2 -» p3

6. TNOW = 3 E-L : (q2 , 3) , (p5 . 0)

Plan : p i -» p2 -» p3 -* p4

-> ql

7. TNOW = 3 E-L : (q3 , 4) . (p5 , 6)

Plan : p i -> p2 -» p3 -> p4iv
-* q l -* q2

3. TNOW = 4 E-L : (p5 . 6)

Plan : p i -* p2 -» p3 -> p4 .

-* q l -> q2
queue(Ml) : q3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

101

Table 3 . 1 1 , continued.

9. TNOW = 6 E-L : (p8 , 8)

Plan : p i -* p2 -» p3 -» p4 -» p5
I

-* q l -* q2
queue(Ml) : q3

10. TNOW = 8 E-L : (q4 , 10) , (p7 , 14)

Plan : p i -* p2 -* p3 -» p4 -> p5 -* p6
^ 'I'

-» q l -» q2 -> q3 -»

11. TNOW = 1 0 E-L : (q5 , 13) , (p7 . 14)

Plan : p i -> p2 -» p3 -* p4 -* p5 -» p6
^ J-

-» q l -* q2 -* q3 -» q4

12. TNOW = 1 3 E-L : (p7 , 14) . (q6 , 15)

Plan : p i -* p2 -» p3 -» p4 -> p5 -» p6
i' 'J'

■* q l -* q2 q3 -» q4 -» q5

13. TNOW = 14 E-L : (q8 , 15)

Plan : p i p2 -* p3 -* p4 -» p5 -* p6

-» ql -* q2 -> q3 -» q4 -» q5
queue(M3) : p7

14. TNCW = 15 E-L : (q7 , 19)

Plan : p i -» p2 -> p3 -> p4 -* p5 -» p6
I ' I
-* q l -* q2 -* q3 -» q4 -* q5 -* q6

queue(M3) : p

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

102

Table 3.11, continued.

15. TNOW = 19 E - L : (qB . 22)

Plan : p i -» p2 -* p3 -* p4 -» p5 -* p6
J I

-* ql -» q2 -» q3 -* q4 -* q5 -* q6 -» q7
queae(M3) : p7

16. TNOW = 22 E-L : (p8 , 24)

Plan : p i -» p2 -» p3 -> p4 -* p5 -» p 6 ------------------------- p7
A I *
-* q l -» q2 -» q3 -» q4 -> q5 -* q6 -* q7 -» q8

17. TNOW = 24 E -L : (P9 , 28)

Plan pi -* p2 -* p3 -» p4 -» p5 -> p6 — -------------------- p7 -» pB
i 1 *
-* q l -* q2 -* q3 -* q4 -* q5 -» q6 -* q7 -» q8

13. TNOW = 29 E-L : (plO , 31)

Plan : p i -» p2 -> p3 -> p4 -* p5 -> p 6 > p7 -> p9 -» p9
J- A
-» ql -* q2 -» q3 -» q4 -» q5 -» q6 -» q? -» q8

19. TNOW = 31

Plan : p i -> p2 -> p3 -* p4 -» d5 -> p 6 ------------------------- * p7 -> p8 -♦ p9 -♦ plO
; ‘ i '
-> ql -> q2 -* q3 -» q4 -» q5 -» q6 -* q7 -» q8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

103

t„ = 3 1 ------
p9

p8

P7

q7

q6

------ ta = 22

t(TNOW)A

p6

p5

p4

p3
p2

q5

q4

q3

_£LL

Part 1 Part 2

Total Duration = 31

Average Duration = 26.5

Figure 3.6 The Schedule which Starts with Part 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

104

operator to be applied is chosen arbitrarily among the subplans. One

possible heuristic for this step could be to begin with the plan with

the longest total duration, since it is likely to be the one that

affects the total duration. Well, this heuristic proves to be ques­

tionable. In the present example, the longest subplan is the subplan

for Part 1, which takes 23 time units es opposed to 15 time units

taken by Part 2. However, as shown in Figures 3.6 and 3.7, the plan

beginning with part one turns out to perform worse than the plan

beginning with part two, primarily because there are more machine

access conflicts. This nondeterminism in plan generation causes sub­

optimism in some cases. PLAN-AHEAD can be used to test various

alternatives in deciding the best plans. The functional diagram of

the planning system is shown in Figure 3.8.

3.4.3 Plan Revisions

During the first phase of the proposed planning method, a

linearly-sequenced subplan is generated for each subgoal. Because

these subplans are constructed independently, each of them seeks to

include its preferred actions and resources in the subplan without

considering the requirements of other subplans - it is a greedy

approach. However, a fundamental problem of this approach arises: if

several subplans all request a highly capable resource which does

everything well, the savings in processing time may not be worth the

waiting time as a result of the long queue. In other words, in some

situations, a subplan may be better off if it uses an alternative

resource instead of waiting for the originally mere preferred one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

105

tx = 3 0 - - plO

p9

p8

P7

p6

t(TNOW)
A

p5

p4

P3

q8

q7

q6

q5

q4

q3
q2

_____ t n = 15

Total Duration = 30

Average Duration = 22.5

Figure 3.7 The Schedule which Starts with Part 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 06

CONFLICT-
OPERATOR- DETECTION PLAN-AHEAD
SEARCK (Resource (Plan
(Planner) Manager) Generator)

user The
inputs --- Planning

System

Data Knowledge
Base Base

Final Plans7

Figure 3.8 The Planning System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107

The same problem also occurs In planning systems like BCOMP,

whose primary objective is "to construct a noninteractive partial

ordering plan" (Nilson [1980]). There is no attempt to optimize any

objective function. However, to perform scheduling, it is always

important to minimize the duration of the schedule.

This section proposes a method that reassigns waiting jobs to an

alternative resource so as to achieve better utilization and perform­

ance. The strategy can be described as follows;

The Plan Revision Scheme

step 1. Identify the resource for which this job is waiting,

step 2. Locate the section of the subplan that would use this

resource.

step 3. Evaluate the expected waiting time vs. the additional pro­

cessing time by an alternative, idle machine,

step 4. Find out the initial conditions and the ending conditions of

this section.

step 5. Generate a plan that can transform the initial conditions to

the goal conditions, using another idle resource,

step 6. Modify the subplan by replacing the section identified in

step 2 with the newly generated plan from step 4.

As an example, according to the plan shown in Figure 3.5, the

t'ubplan for Part 2 waits for four time units for the machine Ml. By

using the plan-revision scheme, the planning system may find an alter­

native resource for Part 1 and thus eliminate the wasted waiting time.

We shall follow the scheme step by step as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

108

(step 1.) the wanted resource is Ml;

(step 2.) the section of subplan requesting Ml consists of q3 and q4;

(step 3.) the expected waiting time for Ml is four time units, while

additional processing time by using m3 instead is five time

units (Table 3.5); since the expected waiting time is less

than the additional processing time of an alternative

machine, the plan remains the same.

In the same plan, the subplan for Part 1 waits, at p6, for eight time

units for machine M3. The same plan-revision scheme is used to deter­

mine whether the plan can be improved. This time an alternative

machine is taken and the total duration is reduced by the scheme.

This can be shown by the following steps:

(step 1.) the wanted resource is M3;

(step 2.) the section of subplan requesting M3 consists of p7, p8,

and p9;

(step 3.) the expected waiting time for Part 1 is eight time units,

while the additional processing time by using an idle,

alternative machine - identified as Ml - is four time units.

Thus the subplan should be modified such that M3 is

replaced by Ml for planning steps in the section;

(step 4.) the initial And the ending conditions ar<? shown in Figure

3. 9;

(step 5.) a plan is generated that can transform the initial condi­

tions to the goal conditions; this is shown in Figure 3.10;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission

a plan, P, which can transform
the initial conditions to the
ending conditions, using an
alternative resource Mx.

PT-NEXTOP
(OPo,0P3)

FINISH-OP
(M2,OPl,t4)

IDLE

TOOL
(DOCK,UNLOAD,t.)

MACH-PT
(DOCK,UNLOAD,t.) Ending

Conditions

Initial
Conditions

Figure 3.9 The Initial Conditions and the Ending Conditions for the Plan-Revision Steps

109

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

—

TOOL MACH-PT
(DOCK,UNLOAD,tj) (DOCK,UNLOAD,tj)

UNLOAD (Ml) p9'

FINISH-OP PT-NEXTOP 1 IDLE
(M^opa.tj) (OP3:NIL) j (DOCK,t2)

Mr * Ml
EXECUTE (Ml ,OP3) p8'

MACH-PT TOOL
(Ml,OP3,t3) (Ml,OP3,t3)

NEXTOP TRANSFER(M2,M1) - p7

FINISH-OP PT-NEXTOP MACH-OP IDLE
(M2,OPI,tA) (0P2.0P3) (Ml,OP3,t4) (Hl.t4)

Figure 3.10 The Search Tree for a Plan Usine an Alternative Resource

www.manaraa.com

I l l

(step 6.) the revised plan is constructed by replacing p7, p8, and p9

with the new operators derived by step 5 above (Figure

3.11); the total duration of the schedule is improved by

five units (Figure 3.12).

3.4.4 Characteristics of the Scheduling System

It has been shown that the planning system can function as a

scheduler in a distributed system and efficiently assign sharing

resources. We shall now characterize such a scheduling system based

on the planning approach and compare it with the more conventional

approaches. The scheduling problem in the flexible manufacturing cell

we have been dealing with has the following characteristics:

(1) Jobs consist of linearly ordered operation sequences.

(2) A given operation can be performed on several alternative machines

with different processing durations.

(3) Each machine, while capable of performing a variety of operations,

can process only one operation at a time.

This scheduling problem can be formulated as an integer programming

problem which captures all the characteristics listed above. Formu­

lating the scheduling problem mathematically enables us to formally

describe the system under study and to contrast our problem with simi­

lar problems treated in the scheduling literature. The integer pro­

gramming problem is described as follows.

Decision Variables:

X.., : the completion time of operation j of job i on machine k.ij k
^ijpq = ■*" ^ operation q of job p precedes operation i of job j;

= 0 otherwise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

112

pl ENTER
p2 EXECUTE(LOAD , DOCK)
p3 TRANSFER(DOCK , Ml)
p4 EXECUTE(Ml , OP1)
p5 TRANSFER(Ml , M2)
p6 EXECUTE(M2 , OP2)
P7’ TRANSFER(M2 , Ml)
P8’ EXECUTE(Ml, OP3)
p9’ UNLOAD(Ml ,DOCK)
plO EXIT

Figure 3.11 The Revised Plan for Part 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

113

= 26

p9 1

p8'

P7'

q7

q6

q5

t„ = 22

t
A

p6

p5

p4

p3
p2

Part 1

q4

q3

q2

Part 2

Total Duration = 26

Average Duration = 24

Figure 3.12 The Schedule after Plan Revision

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

114

Zijpq = 1 ^ operation j of job i precedes operation q of job p;

= 0 otherwise.

Constants:

tijk : t*ie Process n̂8 duration of operation j of job i on
machine k.

M : a very large positive number.

£(i) : the last operation of job i.
n

(A) Minimize I X ^^jk

Subject to

(B) X...i-jk - X. . . , > t... i,j-l,k - ijk
(C) X upqk - X,,. + M*Y.. > ijk ijpq “ tpqk
(D) Xijk - X , + M*Z.. > pqk ijpq - tijk
(E) Yijpq + Z.. >1ijpq -
(F) Xijk > 0; Y,. ,Z,.- ijpq’ ijpq o o

1 < i, P £. N; 1 £. j > q £ ni i .S k JS M

The objective function described in (A) is to minimize the aver­

age duration needed for each job to complete. An alternative objective

is to minimize the total, duration of the schedule, i.e., the time

when all the jobs are completed. This objective function can be

described as:

Minimize (X1>f(1)>k>.

The constraint set (B) represents the linear ordering of opera­

tions in a job. These constraints also impose the condition that an

operation may not begin until its predecessors are completed.

Constraints (C), (D), and (E) are used to regulate the mutually

exclusive condition of machine sharing. For a pair of manufacturing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

115

operations consisting of operation j of job i and operation q of job p,

one of the following three situations may occur:

(i) they are performed on the same machine; operation j of job i

precedes operation q of job p.

(ii) they are performed on the same machine; operation q of job p

precedes operation j of job i.

(iii) they are performed on different machines. In this case, there

is no constraint on their precedence ordering.

In the formulation, condition (i) is represented by z-jjpq = 1 and

Yijpq = similarly, condition (ii) is represented by z^pq = 0 anc*

Y.. = 1; lastly, condition (iii) is represented by Z.. = Y .. = 1.
ijpq ijpq ijpq

The scheduling problem modeled by the formulation (A) to (F) is

more complicated than conventional scheduling problems discussed in

the literature. When having to solve similar n-part-m-machine

scheduling problems, most existing job shop scheduling methods (e.g.,

Baker [1974], p. 207) make the assumption that each job has the same

number of operations, one on each machine. However, as described by

(A) to (F), scheduling in the flexible manufacturing cell has the

characteristics that a job may have any number of operations to be

done and that a job may be performed on a machine more than once while

skipping less preferred machines. The additional complexity of sched­

uling can be attributed to the versatilities of machines in such an

environment.

Another characteristic of scheduling in flexible manufacturing

cells is that jobs arrive at the system randomly over time and the

scheduling method should capture this dynamic characteristic in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

116

constructing schedules. Using traditional methods, scheduling in

such a dynamic environment is usually carried out by means of myopic

dispatching rules - decision rules for assigning jobs when a machine

becomes idle. These rules are myopic in the sense that a job will be

selected from the set of jobs currently waiting for the machine, with­

out considering future jobs. Most dispatching rules assign jobs based

on information local to the machine. For example, the rule can be

based on the length of the processing time (the "shortest processing

time" rule) or the amount of total processing remained to be done (the

"least work remaining" rule). Although simple to calculate, these

rules result in suboptimal schedules because they are myopic and local.

Simulation studies are widely used to determine the performance of

different rules in various environments (e.g., Moore [1967]).

By contrast, the proposed planning system can perform two types

of scheduling: static and dynamic. The static scheduling problem is

to construct a schedule for a given number of parts (this is the case

for the problem solved in the preceding sections). The dynamic ver­

sion of the scheduling problem, where jobs arrive randomly over time,

requires the modification of the current schedule for those jobs

already in the system while taking into account the operations required

by the newly arrived jobs. In this context, our method is extremely

flexible in accommodating new jobs and dynamically changing environ­

ment. First, the actions required to complete the new jobs are

derived by the planner. These actions are then scheduled on the

EVENT-LIST in a linearly-sequenced manner, intermingled with the

remained actions scheduled for other jobs. The resulting schedules,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

117

which assign jobs dynamically, perform better than those using myopic

dispatching rules because considerably more global information has

been taken into consideration.

Prior scheduling methods for concurrent processes (e.g., Baker

[1974], and Brinch Hansen [1973]) have been focused on the problems in

which the task system - which specifies the tasks and their precedence

ordering - is known in advance. By contrast, the scheduling procedure

performed by the planning system described in this paper is "goal-

directed." Only the goal of the scheduling problem (e.g., the comple­

tion of manufacturing jobs) needs to be specified. The sequences of

actions that can achieve the goal are selected by the planning system.

The partial ordering of the actions are also established to correctly

allocate resources, while minimizing the total duration and maintaining

good utilization o f machines.

Using the EVENT-LIST, the planning system possesses the "event-

driven" capability. Events that are beyond the control of the planning

system can be included in the plan. Examples of these events, in the

manufacturing domain, include: the regular maintenance time, the

closing and opening of the system between shifts, and tool changes of

particular machines. These events can be scheduled on the EVENT-LIST

together with the other planned actions. The other actions in the plan

will then accommodate the effects of these events automatically by the

plan generator.

EVENT-LIST can also be implemented as a priority queue - that is,

the elements in the queue are ordered by their priority - so that the

jobs can be prioritized. At each moment of time,each planned action

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

118

has a priority number. Whenever a resource becomes idle, PLAN-AHEAD

will assign the resource to the action with the highest priority. An

application of this priority scheduling is in the environments where

meeting the due-date is a critical factor in deciding the final plan.

After a preliminary plan - which is a partially ordered network of

actions - is determined for the parts involved, the "latest starting

time" for each action can be derived backwardly from the due-date

information. The actual starting time of an action is compared with

this calculated latest starting time. The priority number assigned

to the job reflects how tight it is for the job to meet its due-date.

In general, the more urgent is a job, the higher is the priority

assigned to the job, so that it can be completed as early as possible.

The machine will only start the operation of a low priority job if no

jobs of higher priority are present. Under the non-preemptive assump­

tion, once the machine is assigned a job, it is committed to serve

that job to completion even if jobs of higher priority arrive during

its service.

■In the multiprogramming environment, where jobs can be swapped

back and forth between processors and memory devices, the preemptive

scheduling policy is widely used. The job in service in a preemptive

system is interrupted and returned to the queue upon the arrival of a

job with higher priority. The reason for using preemptive scheduling

is the resulting fast response to urgent jobs. In the computer aided

manufacturing environment, however, it is extremely difficult to

interrupt an operation of a part, put the part into the queue, and

resume the operation later when no parts of higher priority are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

119

present. The physical irregularities of the parts and of the fix­

tures (which hold the parts to the machine) make manufacturing opera­

tion uninterruptable for the sake of precision. Thus, scheduling

systems in the manufacturing environment are primarily non-preemptive.

3.5 Distributed Planning

3.5.1 Planning by Multiple Agents

Multi-agent planning is concerned with the situation where a

group of agents cooperate to achieve common goals. There are two

approaches in handling multi-agent planning, the centralized and the

decentralized approaches, which are classified in terms of the planning

responsibilities of the agents.

The centralized approach is planning for multiple agents; a

single planning agent generates a plan to be carried out by a group of

agents. In general, the centralized multiple-agent planning problem

can be viewed as a special case of nonlinear planning problems, with

each subplan carried out by a different agent. The sequencing and

scheduling problem in Section 3.4 is thus a centralized, multi-agent

planning problem; the partially-ordered plan is centrally produced,

containing a subplan for each manufacturing process of a part. As an

extension, the plans may be carried out by two different agents, each

of which moves a part between machines according to the plan generated

for that particular part.

Another example of the centralized approach occurs in the

operating system domain: the problem of coordinating intelligent

agents at different sites of the ARPANET to achieve certain networking

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

120

tasks specified by users. For instance, a user may tell the agent at

CMU that he wants a file at Stanford to be transferred to MIT, stored

on a disk, and printed there. The CMU agent will construct a complete

plan to accomplish this task, figure out the courses of actions for

all three agents, and then inform Stanford and MIT what to do.

In contrast, multi-agent planning can also be accomplished in a

decentralized manner. This is referred to as distributed planning.

The goals of the problem are decomposed into subgoals and distributed

among the agents. Each agent will then construct a plan for the sub­

goal it is assigned and execute its share of the final, synthesized

plan. For example, the mobile robots in a computer aided manufacturing

system can play the role of planning agents; each carries a part

around the system to complete necessary operations. According to the

manufacturing requirements of the part it carries, the robot's control

system generates a plan for the part and then executes the plan by

carryirg the part to the selected machines. The important issue here

is: how can a robot make sure that its plan does not conflict with

that of the other robots, while completing the required operations

efficiently.

The identification of conflicts and subsequent resolution of

conflicts needs additional consideration in distributed planning

systems. Since the control is decentralized, the potential harmful

interactions to a subplan caused by other agents must be detected

purely based on local information. From this standpoint, two kinds of

activities become important in distributed planning: communication

and synchronization. Communication activities are used to exchange

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

121

the necessary information between the agents. Synchronization activi­

ties are used to establish desired interactions among agents' plans so

that their actions are well-coordinated.

3.5.2 Communication and Synchronization

After each agent has constructed a (sub)plan for the subgoals it

is assigned, the potential conflicts among all the subplans need to be

recognized and then avoided. The communication and synchronization

capabilities are essential for an agent to direct its activities in

concert with that of the other agents, resolving any conflict that

may occur.

When all the subplans are generated by a single agent, conflicts

can be detected by reasoning about resources - actions of different

subplans that use the same resource are potentially conflicting. A

sequential ordering constraint is imposed between every pair of con­

flicting actions to ensure the correctness of their accessing the

resources. This is the method used in the preceding section.

Since different subplans are under the control of different

agents in distributed planning, the detection and the avoidance of

conflicts become more complicated in the decentralized environment.

Unless the agents exchange their information about their subplans, an

agent could not possibly know whether its planned actions are con­

flicting with those of other agents, nor how to resolve the conflicts.

Thus, concurrently executed subplans among the agents must

communicate and synchronize in order to cooperate. Cooperation is

achieved through the effort to resolve all the potential conflicts.

The idea is to intermix communication and synchronization activities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

122

with other action? in the plan, so that one agent may exercise

influence upon the plan of other agents. The issue of how to properly

integrate the communication and synchronization activities into the

plans in order to coordinate the actions of different agents will be

subsequently addressed.

Coordinating multi-agent planning is conceptually similar to

managing the concurrent processes in a multi-processor operating system,

where numerous processes contend for accesses to the processors and

other system resources. The job of the operating system is to provide

mutual exclusion and synchronization among the processes, so that none

of them will interfere with one another.

Based on the techniques of concurrent processing, communication

between agents can be achieved by one or two methods: by shared

variables or by message passing. The semaphors used for resource

reasoning in Section 3.4 are an example of the shared-variable

approach. This approach is used primarily for centralized multi-agent

planning, where the subplans share a database during their development.

Semaphors (which are basically shared variables) are used to indicate

the status of resources; critical regions are identified in the sub­

plans to ensure orderly access to shared resources. However, the

shared-variable approach is not appropriate for distributed planning

where the group of agents are loosely-coupled and do not share any

common database. In such an environment, message passing is more

appropriate.

When the message-passing approach is used for communication and

synchronization, the processes send and receive messages instead of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

123

reading and writing shared variables. Message passing is a form of

communication between the sender and the receiver of the message. Syn­

chronization can be accomplished by such communication operations

because the action of sending a message must take place before the

action of receiving the same message; one action is delayed until the

other is ready for the communication. Thus, a precedence ordering

between the sender and the receiver is enforced by the operation of

message passing. This property of message passing can be used to main­

tain mutual exclusion in critical sections of agents' plans.

The techniques of concurrency management developed for multi­

processor operating systems can be incorporated into distributed plan­

ning in the following manner.

(1) Since the major cause of conflicts between planned actions of

different agents is the accessing df shared resources, the con­

secutive actions in an agent's plan that use the same resource

should be in a critical section.

(2) If several agents include the use of the same resource in their

plans, their actions must be coordinated to avoid any potential

conflicts. This coordination is accomplished through the proper

placement of synchronization activities in each agent's plan.

These synchronization activities will then ensure the mutual

exclusion between critical sections of different agent's plan.

This is equivalent to enforcing that every resource should be

exclusively used by one agent at any given time. (3) and (4)

below show how to achieve this synchronization in a decentralized

fashion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

124

(3) Synchronization is achieved by message passing between agents.

When an agent reaches a communication operation in its plan, the

agent waits for the corresponding agent (designed as the receiver

or the sender) to reach the matching communication operation. At

that point, the communication is performed as directed by the

input/output commands and both agents resume their plan executions

for subsequent actions.

(4) Potential conflicts are avoided by enforcing the mutual exclusion

of critical regions. When an agent is ready to enter a critical

region, it sends a signal to a "coordinator" to ask for permissioa

The coordinator checks on the status of the resource and grants

the permission if no other critical region is using the same

resource. Otherwise, the agent is suspended until the resource

is free again.

Since the formalism we shall use to denote message-passing activi­

ties in distributed planning is based on the Communication of Sequen­

tial Processes (CSP) formalism defined by Hoare [1978], this synchroni­

zation mechanism is briefly reviewed in the following section.

3.5.3 Synchronization Based on Message Passing

CSP is a formalism for concurrent processing in distributed

environments. A program in this formalism is a collection of sequen­

tial processes, each of which can include interprocess communication

operations. Communication is achiev“d by the use of input/output

commands in processes. t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

125

An output command in CSP has the form

receiver ! value

where receiver is the name of the process that is the designated

receiver and value contains the information intended to be transmitted.

The counterpart of the output command, the input command, is in the

form

sender ? x

where sender is the name of the process which is expected to send the

message. When the message is received, the value in the message is

copied into x.

Communication is invoked when one process names another as the

receiver for the message and the second process names the first as the

sender for the message. In this case, the value is copied from the

first process to the second process. In the CSP formalism, message

passing is synchronous because an input or output command is delayed

until the other process is ready with the corresponding output or

input. Thus, the insertion of input and output commands in processes

can be viewed as a way to impose a precedence ordering constraint

between a pair of operations from different processes.

Hoare also adopts the guarded commands as a means of introducing

the pattern-matching feature in the CSP formalism. When the input

commands are coupled with guarded commands in the receiver, input

messages that do not match the patterns of the guarded commands are

inhibited.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

126

A pattern-matching statement using the guarded command is in the

following form:

[if G1 +

o G2 * S2

• • •

□ G -*■ S' n n
fi]

where G^ is guard containing a Boolean expression and S^ is the corre­

sponding statements that are executed when is chosen. This pattern-

matching statement works as follows. A guard G^ is chosen for execu­

tion if its Boolean expression is true and the sender named in G^ is

ready to execute the corresponding output command. If several guards

can be chosen, only one is selected nond ■ irministically. If none of

the guards can be chosen, the statement aborts. The guarded commands

provide a receiver with the "selective communication" capability - only

those messages that match the guards will be received.

Using the CSP formalism in distributed planning, the coordination

scheme is as follows. When an agent is about to enter a critical

section in its plan, it sends a message to a coordinator to notify the

entry. The coordinator checks on the status of the resource and

grants the entry if no other critical section is using the same

resource. Otherwise, the coordinator will delay the entry until the

resource is free again.

The communication between the planning agents and the coordinator

is accomplished by using the CSP formalism. Specifically, when an

agent enters a critical section of its plan, it sends a message to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

127

coordinator indicating the resource. This can be accomplished by the

output command:

M ! enter(i)

where i is the index of the resource. When the agent, who is currently

in the critical section using resource i, exits the critical section

and releases resource i, it signals the coordinator again by an output

command

M ! exit(i) .

For the coordinator, it uses BUSY(i) to represent the availability

of resource i (BUSY(i) = false when resource i is available). An agent

may use resource i only if it signals to the coordinator about the

attempt and resource i is available. This condition can be repre­

sented by a guarded command:

□ not BUSY(i); A1 ? enter(i) -*■ BUSY(i) := true

where BUSY(i) is initialized to be false. This statement can be

interpreted as follows. If BUSY(i) is false and the agent A1 sends a

message "enter(i)", then A1 is granted the entry to resource 1; and

BUSY(i) becomes true.

3.5.4 The Application of Distributed Planning to a Machine Loading
Problem

An example of the application of distributed planning in the

computer integrated manufacturing environment, which is originally

discussed in Georgeff [1982], is now presented using the resource

reasoning and synchronization approaches. It is concerned with a

machine loading problem with two mobile robots, each of which plays

the role of a planning agent. Without the loss of generality, we only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

128

consider a two-part-one-machine problem, where the major focus is the

use of synchronization mechanisms to coordinate the planning of each

agent.

Assume that each agent has first generated a plan using a STRIPS

type linear planning method as follows:

robotl (parti):

A1 MOVE(partl,MACH,robotl)

A2 LOAD(parti,MACH,robotl)

A3 EXECUTE(parti,0P1)

A4 UNLOAD(parti,MACH,robotl)

A5 MOVE(parti,warehouse,robotl)

robot2 (part2):

Bl MOVE(part2,MACH,robot2)

B2 L0AD(part2,MACH,robot2)

B3 EXECUTE(part2,0P2)

B4 UNL0AD(part2,MACH,robot2)

B5 M0VE(part2,warehouse,robot2)

The planning steps of robot 1 and robot 2 consist of similar

actions. Both robots need to move a part to a machine, denoted by

MACH, and load the part onto the machine. After executing a required

operation - OPl for part 1 and 0P2 for part 2, the robots unload the

parts and move them to the warehouse. Since only one robot can have

access to the machine at a time, consecutive actions that use MACH as

the resource form a critical section. Different critical sections of

the same resource are kept mutually exclusive by means of synchroniza­

tion operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

129

To detect potential conflicts between the two agents, the first

step is to identify the critical sections of each agent's plan. A

critical section is a set of consecutive actions that require the same

resource. Thus

[A2,A3,A4] and [B2,B3,B4]

are two critical sections. Furthermore, these two critical sections

are mutually exclusive because they use the same resource.

This mutual exclusion is enforced by inserting CSP operations

into the two plans. When an agent is ready to enter a critical

region, it outputs a message to a resource manager to ask for permis­

sion. The resource manager, M, using guarded commands, will check on

the availability of the resource and grant the permission if the

resource is free. Otherwise, the agent is delayed until the resource

is released by the current user. '

robotl(Rl):

MOVE(parti,MACH,robotl) /* move to the machine */

M! enter(MACH) /* ask for permission */

LOAD(partl,MACH,robotl) /* load the part */

EXECUTE(parti,0P1) /* machining */

UNLOAD(part1,MACH,robo 11) /* unload the part */

M! exit(MACH) /* release the resource */

MOVE(parti,warehouse,robotl) /* move to warehouse * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

130

robot2 (R2):

MOVE(part2,MACH,robot2) /* move to the machine * /

M! enter(MACH) /* ask for permission */

LOAD(part2,MACH,robot2) / * load the part */

UNLOAD(part2,MACH,robot2)

EXECUTE(part2,0P2) /* machining */

/ * unload the part */

M! exit(MACH) /* release the resource */

M0VE(part2,warehouse,robot2) /* move to warehouse */

The resource manager keeps track of the status of machines. Its

knowledge is modeled by the pattern-matching guarded commands:

The above statements can be interpreted as follows. A robot can enter

its critical section if the other robot is not executing its critical

section; when a robot finishes using the machine, the status of the

machine becomes "not BUSY."

3.6 Conclusion

Mechanisms have been described for using a knowledge-based

planning system to manage the computer integrated manufacturing system

characterized as a distributed environment. Two kinds of information

in the action formalism are emphasized: resource and duration. The

planning system uses a "reasoning about resources" mechanism to main­

tain the correctness of machine usages when several manufacturing jobs

[if not BUSY2; R1 ? enter (MACH) -*■ BUSi'2 := true

□ not BUSYl; R2 ? enter (MACH) BUSY1 := true

□ R1 ? exit (MACH) -+■ BUSY2 := false

a R2 ? exit(MACH) + BUSYl := false

fi]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

131

are competing for the machine. A plan-generator, called PLAN-AHEAD,

determines the precedence ordering between conflicting actions by

means of the duration information; the final plan - a partially ordered

network - has maximized parallelism. A plan-revision mechanism is

used to reassign a job to an alternative machine if the job is delayed

in a machine queue. We have shown that the planning system can play

the role of an on-line scheduler. The scheduler is characterized by

being goal directed, its ability to cope with the dynamic environment,

and being event driven. Operating system techniques have been used

to provide appropriate synchronization and communication in coordi­

nating concurrent manufacturing activities. Planning steps are

grouped into critical sections according to the resource they need and

thus maintain the mutual exclusion of shared resources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

132

CHAPTER 4
TASK SHARING AND PLANNING IN CELLULAR
FLEXIBLE MANUFACTURING SYSTEMS

4.1 Introduction

4.1.1 Overview

This chapter attempts to incorporate a decentralized allocation

mechanism in the information system for the computer integrated manu­

facturing environment. The cellular organization is used to embody

a distributed control structure into the manufacturing system - machines

are grouped into manufacturing cells which are the modular units in

the system. A cell can communicate with other cells through a communi­

cation subsystem (e.g., a local area network). Because of the auton­

omous nature of the cells and the lack of a central control unit, this

cellular system is characterized as a loosely-coupled, decentralized-

control system. In each cell there is a knowledge-based planning

system, similar to the one described in Chapter 3, that manages and

controls the execution of manufacturing tasks within a cell. In this

context, the information system in the cellular manufacturing

environment is a distributed knowlcJge-based system.

Since an incoming job may consist of a set of tasks to be

assigned to several manufacturing cells, the information system needs

to supply a mechanism that permits careful matching of tasks to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

133

available machines, ensuring appropriate uses of resources. Also,

this meachnism should enable efficient communication between manufac­

turing cells working on related tasks, or should be able to migrate

subtasks dynamically in case of machine overload. Accordingly, there

are three primary issues that need to be addressed:

(1) the interface language that enables communication among cell

hosts;

(2) the problem-solving process which, utilizing the communication

network, enables effective cooperation among cells to perform

j obs; and

(3) the automation of this problem-solving process in each cell

in a decentralized manner.

A negotiation protocol based on the works in distributed problem

solving (DPS) (e.g., Smith [1978], Davis and Smith [1983]) will be

developed in this chapter to fulfill these requirements. It is a

high-level protocol used to ensure orderly interactions between

asynchronous, cooperating cells; it also prompts proper actions in a

cell based on the messages received. The underlying idea is to

structure the interactions between modules - the manufacturing cells -

as a process of negotiation.

It is important to have a good representation of the contract

net protocol to capture the dynamic, concurrent nature of the protocol.

In addition, this representation should be integrated into executable

programs, controlling the interactions between cells and coordinating

the assignments of tasks to machines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

134

In this chapter we use the augmented Petri nets - an integration

of production rules and Petri nets - to model the negotiation protocol.

The automation of this augmented Petri nets provides the basis for

a task-sharing algorithm to dynamically assign tasks to appropriate

cells. By implementing the algorithm in a knowledge-based system, we

adopt a unified representation for the planning process and the cooper­

ation process.

4.1.2 The Structure of a Cellular Flexible Manufacturing System

The introduction of Flexible Manufacturing Systems (FMS) into the

manufacturing industry has been an important new step in the develop­

ment of the fully automated manufacturing systems. An FMS is designed

to manufacture a variety of products in small volume, while simul­

taneously possessing the efficiency of a transfer line and the flexi­

bility of a job-shop (Groover [1980]). The focus of this chapter, how­

ever, is a distributed version of the FMS, as defined subsequently.

Cellular Flexible Manufacturing Systems (CFMS) consist of a

collection of manufacturing cells, each of which is an independent

module of a group of machines, robots and material handling devises

(Figure 4.1). The idea is to let each manufacturing cell specialize

in a specific family of part types and thus further improve efficiency

from the reduced set-up changes between consecutive jobs (Cutkosky

[1983]). Several cells may be assigned to a single job if that job

comprises sub-components of different part families; a mechanism is

therefore required to properly assign jobs and sub-components to

various cells. On the other hand, since a manufacturing cell may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

135

machines

CellCell
HostHost

CellCell
[HostHost.

Communication

Subsystem

Cell Cell
HostHost,

Figure 4.1 Cellular Flexible Manufacturing System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13 6

perform operations for different jobs in a multiprocessing fashion,

the planning system within a cell also needs to resolve conflicts

among these jobs. An example of the organization of a manufacturing

cell is shown in Figure 4.2.

Thus there is a control hierarchy in the CFMS, as shown in

Figure 4.3. Sensors are used to provide the system with information

about the process environment such as part locations and robot-arm

manipulator movements. The machine controllers act as interfaces

between the cell host and the machining processes while controlling

the individual machines. The cell host computer is responsible for

the control of part flows and the scheduling of multiple tasks

within a cell. The CFMS monitor collects management information from

the cells; this information includes machine status, cell loading

and in-process inventories, etc. Upon taking a new job, the cell

host will request the corresponding automation programs and other

relevant information on that job from the CFMS monitor computer.

Besides savings on the set-up time, using manufacturing cells

to form a loosely-coupled CFMS with decentralized control has several

additional advantages over the “centralized FMS.

1. Modularity and Extensibility: new cells can be easily added into

CFMS without having to modify the other components or the control

structure.

2. Graceful Degradation and Reliability: faulty cells can pimply be

ignored and reroute the workpiece to other cells of the same

product family.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

137

L oca l A r e a
N e tw o r k O p e r a t o r T e r m in a l

G iipper
Sensor Leads

Cell H o s t
M u l t i -A x is R o bo t

Serial Com munication Links

L a th e
L o a d in g
R o b o t

L a th e
L in e a i
T a b le

Mill

V is io n
System

Fixture

Possible Sensor
Inputs

G ripper

Tool

Cntrl

Table

PCTool

Cntrl

In p u t/O u tp u t
Ports

Figure 4.2 The Organization of a Manufacturing Cell
(from Cutkoskyjet. al. [1983])

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

138

Manufacturing
Cell Host

Sensors

Monitor
Computer

CFMS

Plant Level
Computer

Controller
Machine

Figure 4.3 The Control Hierarchy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

139

3. Signal Accuracy: distributing control permits the placement of

control computers (cell hosts in CFMS) near the mechanical de­

vices with which they interact, thus eliminate the weakening

signal problem associated with centralized systems where the

signals have to pass through long links.

Despite all the inherent advantages, using a distributed control

structure does introduce additional overhead and complexities in the

planning system. The major causes of these complexities are the extra

coordinating activities required to maintain global coherence and to

achieve optimality in task allocations. Therefore, good designs on

the organization and coordination are required to justify the use

of decentralized control.

The remainder of this chapter is organized as follows. The

second section describes the characteristics of the distributed

problem solving system in a CFMS environment and proposes a planning

model to tackle the problem. The next section proposes the use of

contract net protocol for coordinating the tasks; this protocol is

then represented by an augmented Petri net model. The fourth section

illustrates the implementation of the contract net protocol as well

as the issue of algorithmic complexities, and the final section

summarizes the contributions of our approach. Possible extensions

are also discussed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

140

4.2 Cooperative Planning in the CFMS Environment

4.2.1 Reconfiguration of CFMS and the Task Sharing Problem

In a CFMS, when a job consists of sub-components of different

part types, several manufacturing cells are assigned to execute

the operations required by sub-components collectively. Thus the

planning system needs to select the most appropriate cells to perform

tasks for the sub-components. This is called the task-sharing problem.

Task sharing also occurs when a cell is overloaded and want3 to

distribute some of the tasks to other cells. In the CFMS environment,

task sharing serves as the basis for cooperation between cells; the

result of an agreement on task sharing is the binding of manufacturing

cells to perform the job in a coordinated fashion.

Since a CFMS by definition has multiple jobs which coexist in

the system, whereas a cell may be shared by several jobs, a configura­

tion of CFMS is defined as the assignment of cells to tasks. Whenever

there is a change of jobs, the reconfiguration of the CFMS can be

achieved by solving the task sharing problems for the new set of jobs.

For a fixed CFMS configuration, a manufacturing cell acts like a work

station in a transfer line: high efficiency is achieved by pipelining

the workpieces through the fixed sequence of cells connected as a

result of task sharing. This pipelining continues until the required

batch size of the job is completed. The CFMS has the flexibility to

accommodate different job combinations by reconfiguring the manufactur­

ing cells. The reconfiguration of the CFMS is realized by distributing

the new tasks among the cells through the task sharing procedure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 41

4.2.2 Modelling the Coordinating Cells: The Society of Experts Metaphor

A classical analogy to investigate the problem solving process

in a distributed environment is that of teaming up a society of

experts to solve a problem cooperatively (Minsky [1979], Kornfield and

Hewitt [1981], Davis and Smith [1983]). Viewing the host computer of

each cell as a problem solving agent (an "expert") in charge of the

planning activities, the planning system of a CFMS then consists of

a group of planning agents; the knowledge or expertise is distributed

among the experts, while each expert has only a partial view on the

whole problem domain. This society of experts metaphor can contribute

to our designing a distributed problem solving system by providing

a model to address the following issues:

1. The information about what the experts need to communicate with

each other; this information can provide us with insight on the

possible types of messages, and the proper contents the messages

should carry when they are passed between manufacturing cells.

2. The way the experts cooperate in performing a task; this knowledge

can help us in designing a similar algorithm to distribute a job

among the manufacturing cells and to maintain proper interactions

between cells if necessary.

3. The way a set of experts reach agreements, this information is

of central importance to the configuration/reconfiguration of

CFMS, since the grouping of manufacturing cells to perform a job

can be interpreted as forming an agreement between these cells.

One implication resulting from the society of experts metaphor

is that the processes in the cellular manufacturing system - i.e., task

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

sharing, resource allocation and information transactions - are analo­

gous to those of human organizations. The related research in economics

and control theories concerning team behavior and decentralized

decision making may therefore serve as vehicles to our modeling the

distributed system.

We have stated that the primary problem-solving activities in a

manufacturing cell is the planning of tasks within the cell; however,

the term "planning" was not rigorously defined. In the following

section, a formalism for the planning process as well as a formalism

for the multi-task planning process will be presented.

4.2.3 A DPS Formalism for the CFMS

In our modeling the control system for CFMS, cell hosts are prob­

lem solving units that interact with the manufacturing environment.

They must be able to aggregate individual steps into sequences to

achieve desired goals. This process is referred to as the planning

process. A planning system has two components:

1. The world model, containing a symbolic description of the real

world. This world model is represented by the collection of

first-order predicates in a database. An instance in the data­

base is called a state-description in the world model.

2. The action model, describing the transformational effects of

actions that map from states to states. Such mappings are usually

referred to as operators, as the STRIPS operators defined in Nilson

[1980].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

143

Operators specify the form of the individual steps which make up

a plan. All possible ways of applying the operators, both to initial

states and to intermediate states, determine the search space for the

set of predicates in the database. An inference engine is the control

unit of the planning system that directs the plan generation process

to achieve a desired goal state from a given initial state. The

sequence of actions that are generated is called a linear plan.

Formally, the problem to be solved in the planning system can be

defined as a quadruple

PR - <S,0,IS,G>

where S is the set of states in the database, 0 is the set of operators,

defined as functions S S; IS is the initial state and G is the goal

state. The inference engine selects the sequence of operators in the

search space based on predefined control strategies.

To perform planning by a distributed system, the problem PR is

decomposed into subproblems. The final plan consists of a collection

of plans for these subproblems, coordinated to be applicable to all

initial state IS and to achieve the goal G. The coordination between

planning agents may be accomplished through messages passed between

agents. The key issues then are how to automate this coordination and

how to regulate orderly interactions.

The configuration of a distributed problem solving system and the

effects of interactions between the agents can be visualized better

if we represent the system as a directed graph

G = (E, I)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

144

The graph G defines the information structure of the distributed

system. The problem solving activities in node i may impact on the

problem solving activities in node j through the interactions 1^.

Every node in the graph represents a problem-sovling agent Ê .

A task T is decomposed into subtasks t^s t t which are

assigned to experts E , Ee , ..., Ee (e e R is the index of the1 2 m 1
corresponding expert). If the collection of subtasks assigned to

expert ê is denoted by Te ,̂ then

U Te± - Ti e [l,m] 1

and

Te O Te. = (J).
1 i + j 3

We are mainly concerned with problems which can be sufficiently

decoupled and the effects of one agent are largely independent of

other agents. This is the case in the CFMS environment where machin­

ing operations in different cells are mostly independent. The primary

coordinating activities, then, are the assignments of subtasks to

appropriate agents. The process of DPS can be algorithmically repre­

sented as follows:

Procedure DPS (T)

Input:

T: the task to be achieved.

E: the set of expert nodes.

I: the set of interactions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

145

Output:

P: a distributed plan to achieve goal T.

Begin

Tf DECOMPOSE (T)

{T * is a partition of T}

A + — DISTRIBUTE(X',E)

{A is the set of pairs (e., T)}
i

For all i Do

Begin

If (OVERLOAD(e)) Then DPS(T)
1 ®i

P — EXECUTE (e ,T)I i e±
End

P «- result(e^, P̂)

End

This DPS strategy is consistent with that proposed by Kieburtz

[1979], Tenney and Sandell [1981],and Davis and Smith [1983]. (In

Section 4.4.3, we shall see an implementation of this strategy based on

the contract net approach.)
In the decomposition phase, the aim is to identify subtasks

that can be carried out concurrently. It is important to analyze

the dependency relation between the subtaoks, so that necessary

synchronization can be applied accordingly. For a manufacturing

process, the primary dependency relation between subtasks Is the

precedence constraints between manufacturing operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

146

The second phase, the distributing of subtasks among nodes, is

the major concern of this chapter. We use a task-sharing strategy based

on a "negotiation process" to schedule the subtarsks. The details of

this procedure will be discussed in the next section.

The execution phase is applied locally at each node; in a CFMS,

it is handled by the cell hosts. The primary task of this phase is

coordinating the multiple jobs in the cell and resolving conflicting

requests.

Methods developed in the artificial intelligence field suitable

for multitask planning, such as NOAH (Corkill [1979]), DCOMP (Nilson

[1980]), SIPE (Wilkins [1982]) and Deviser (Vere [1983]) are possible

tools in this phase. The planning activities of these methods can be

broken down into four stages:

1. linear planning;

2. interaction analysis;

3. conflict resolution; and

4. plan synthesis.

In the manufacturing environment, additional consideration should be

given to the possibility of collision between moving parts or robot

arms. This problem has been solved by posting constraints in the

planning process (Bourne, et. al. [1982], Lozano-Perez [1982]).

Finally, the completed subtasks are collected and synthesized

into the finished job. In the manufacturing process, this phase can

be included in the final task of assembling the components.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

147

4.3 The Contract Net Strategy

4.3.1 Negotiation Procedure for the Dynamic Reconfiguration of CFMS

The view of treating cooperation as the task sharing problem is

directly inherited from Davis [1983]. The coordinating mechanism

primarily aims at assigning sub-tasks to the most appropriate expert

who is both capable and willing to do the tasks. To design a similar

mechanism to coordinate the planning activities of manufacturing cells

in CFMS, we solve the task sharing problem by an algorithm analogous to

the contract negotiation between cells. This procedure consists of

announcement-bid-award sequences to distribute a task to appropriate

cells; it is characterized as a mutual selection process: a manager

cell with tasks to be distributed attempts to select the most suitable

cell to handle the tasks, while a cell with idle machines is also

selecting among the announced tasks and submitting bids on those tasks

it prefers. A contract is established when a bidding cell is selected

by the manager cell. The announcement-bid-award cycle is detailed

as follows:

When a manufacturing cell has a task it is not capable of hand­

ling, the cell may decide to announce the task to other cells to seek

assistance. The announcement messages contain three types of task-

dependent information:

a) The eligibility specification: listing the qualification for a

cell to submit a bid.

b) The task abstraction: providing a brief description of the task

to allow interested cells to evaluate the task by comparing it

to other announced tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

148

c) The bid specification: specifying the expected format of the bid

to be submitted.

A cell in the network keeps an "active-task announcement list"

for every machine in the cell and ranks each announced task in the

list according to its type. When a machine becomes idle, the cell

selects a task at the top of the list and submit £ bid to the cell

originating the task (the manager cell). A manager cell may receive

several such bids in response to a single task announcement. The

award decision is made based on all the bids received, and the

manager cell selects the most appropriate cell based on some ranking

criteria (e.g., distance between the two cells, the loading factor

of the bidder, etc.). The successful bidders are informed of the

award through award messages from the manager cells. Thus the contract

negotiation is an interactive process where both parties have evaluated

all the alternatives before they reach the final agreement to establish

the contract.

4.3.2 The Design of Communication Protocol for the CFMS

To enable processes at various manufacturing cells to communicate

with each other, a set of rules must be established to regulate the

interactions between the cells and to ensure that they proceed in an

orderly fashion. This set of rules is called protocol of the communi­

cation. The requirements of protocol for establishing cooperation be­

tween manufacturing cells are more complicated than merely deciding

on the communication paths. The protocol also has to carry out the

negotiation algorithm for task sharing, relying heavily on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

149

interpretation of themessages contents. Because of the problem-

oriented nature, we call this protocol a problem-solving protocol.

Thus, a formal model for the CFMS protocol should contain three

components:

1. A formalism for the message contents. There is a task dependent

language to describe the information detailed in the messages;

since this language is common to all of the cells, this

language is also called the intercell language. The primary

function of the intercell language is to describe the characteris­

tics of the task in the message.

2. A formalism for the message format. This formalism, being inde­

pendent of the task domain, is used to regulate the format of the

message given a message type. For instance, the message for task

announcement is formatted as (Smith [1980])

<task-announcement>: = TASK-ANNOUNCEMENT

[name]

{task-abstraction}

{eligibility-specification}

{bid-specification}

where each component enclosed in " { }" is to be filled with
information encoded in the intercell language.

3. A formalism for the negotiation process. This formalism is used

to describe the proper sequencing of actions to carry out contract

negotiation among cells. Since several contracts may coexist in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

150

a CFMS, this formalism needs to be able to describe asynchronous,

parallel processes. The augmented Petri net model (Zisman [1978])

is used to model the negotiation process for its descriptive power

in modeling concurrent problem solving systems.

The first two formalisms for regulating information in the message

can be realized by context free grammar in the form of BNF expressions.

This is a common treatment in modeling protocols (e.g., Smith [1980],

Teng and Lui [1978]) and will not be elaborated here. In the follow­

ing section, the formalism for contract negotiation is discussed.

The network on which the negotiation protocol is implemented can

be modelled as a three-layer structure (Figure 4.4). The negotiation

protocol is a high-level, problem-oriented protocol governing the communi­

cation between cell hosts for task-sharing. The host-to-host protocol,

or the transport protocol, is used to provide reliable communica­

tion between processes in host computers. This layer is often im­

plemented by the program called transport stations (TS) which is part

of the host's operating system. The lowest level of the protocol,

the transmission protocol, is responsible for the transmission, packet-

ing and routing of data between cells; the transmission layer actually

incorporates the functions of the physical layer, the data-link

layer and the network layer in the more common ISO multi-layer

protocol model, as defined in Tanenbaum [1981].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Problem-Solving
Layer

Transport
Layer

Transmission
Layer

Cell Host
1

L

Cell Host
2

Negotiation
ProtocolProcess Process

Host-to-Host
TS

Protocol

The Network
Subsystem

Figure 4.4 A Structure of the Protocol

www.manaraa.com

152

4.4 Implementing the Contract Net

4.4.1 A Model for the Negotiation Process

During the contract negotiation process, there are strict

requirements for communication and coordination between cells, while

each cell is an independent, autonomous entity in the process. Thus

a good formal model should ably describe two aspects of the negotia­

tion:

1 . a procedural representation of the communication and coordination

mechanisms between the cells; and

2. a declarative representation of the local problem solving behavior

within a cell upon receiving messages.

Here we use the augmented Petri net model to represent the

negotiation process. The augmented Petri net is an integration of

two representation models: Production rules are used to model the

individual events (the declarative representation), and the Petri net

is used to model the interactions and temporal relationships between

these events (the procedural representation). The augmented Petri

net model has been proven effective in modeling asynchronous, con­

current processes where the combination of state variables grow ex­

ponentially. In the augmented Petri net model, each transition

corresponds to a production rule and the Petri net structure of the

model can be viewed as the interactions between the productions.

To understand the mechanism of an augmented Petri net, let us first

review some aspects of the Petri net as a modeling tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

153

Originally designed to model process concurrency and precedence

relations, the Petri net model has been used to model, specify, and

verify communication protocols (Peterson [1981] , Danthine [1980]).

The definition of the Petri net follows:

Definition 1 (Petri Net)

A Petri net, W, is a four-tuple, W = <P,T,I,0 >, where P is the

set of places, T is the set of transitions, I:T P* is the input

function, and 0:T ->- P* is the output function.

A place is marked if it has one or more tokens; a transition is

enabled if each of its input places are marked. The firing of an en­

abled transition removes one token from each of its input places and

adds one token to each of its output places. A token distribution

among the available places in a Petri net is called a marking.

Corresponding to each Petri net and an initial marking, Petri

net language is defined as follows:

Definition 2 (Petri Net Language)

If there exists a Petri net, W = <P,T,I,0>, a labelling

function for the transition 1:T -*■ Z, and an initial marking A, then

the possible sequences of transition firings generate the Petri net

language:

L(l) = (1(6) e Z*|(3 e T* and 6(A,0)}

where 5 is the next-state function. For sequence of transitions

cj2 6(A» tjitj2tj2‘ * ,t:jk̂ is the result of firinS
tĵ , then tj2 and so on until t ^ fired.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

154

We now proceed to formally define an augmented Petri net:

Definition 3 (Augmented Petri Nets)

An augmented Petri net is composed of seven elements:

APN - <P,T,1,0,A,AP,D>

where <P,T,I,0> is a Petri net defined in Definition 1; \ is the

initial marking of this net. The set of transitions, T, also defines

the set of productions, with each transition corresponding to one

production rule. AP is the set of active productions and D is the

set of database elements in the production system.

A transition t in T is firable iff

(1) t e AP; and

(2) I(t) is marked; I(t) represents the set of input places of the

transition t.

In the augmented Petri net model, since there is a production

corresponding to every transition, we can label the transition and the

associated production rule with the same labelling function. The

Petri net language in the augmented Petri net can thus be seen as

either the set of all possible sequences of transitions or, alternative­

ly, as the set of all allowable sequences of production rule invoca­

tions.

The execution of task-sharing negotiations in the CFMS demands

well-governed interactions and cooperations between cells, exhibiting

concurrency and parallelism. The manager cell may be ranking the in­

coming bids while the potential contractors at the same time are

collecting task-announcements and deciding on whether to submit bids.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

155

The concurrent nature creates difficulties in modeling the negotiation

process. The transfer of messages (e.g., task-announcements, bids)

from one cell to another requires that the activities of the involved

cells be synchronized.

Adopting the augmented Petri net model, the negotiation process

can be represented by two subsets: one (Figure 4.5) is constructed

from the viewpoint of the manager cell who announces a task to other

cells, processing the incoming bids and awards the task to the selected

cell; the other sub-net (Figure 4.6) is constructed from the viewpoints

of the cells who receive the task-announcement (the contractor cells).

This sub-net deals with the decision on submitting bids.

Each event in the process is modeled as a production rule, and

the interactions between these events are represented by the Petri net.

Each transition in the Petri net (denoted by a bar in the figures)

maps to a production rule. When a transition is enabled (all input

places have at least one token), its firing will be determined by the

rules corresponding to that transition.

Table 4.1 lists the set of production rules that determine the

transitions in the two augmented Petri nets in Figure 4.5 and Figure

4.6. Rules T1 to T9 correspond to the task-announcement process of

the manager cell; rules T10 to T16 correspond to the bid-submitting

process of the contractor cell. At each step in the process, the

augmented Petri nets guide the contract negotiation process of all

cells in deciding the proper actions, and they execute the actions

in appropriate sequences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

156

o>

00

LO

m

m

<N

oo
co
CO
Gao
i-jP*
•uGG6CUOa30 G
1
COGH
G

. f iH
m
vj-
G
300•H
F*h

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

157

CO

in

o\

CM

co(00)CJou
Pm
00C•H
X)•H
PP

CU
£

vO
<r
<Du300■HPk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

158

Table 4.1 The Production System

T^... If a new task is generated
Then specify the information about the task in a task template.

T^... If the cell cannot handle the task
Then initiate the task-announcement procedure.

T^... If a bid is received
Then initiate the bid-processing procedure.

T. ... If the deadline is not reached
4

Then retain a ranked "bid list" on all the bids received so far.

T ... If (the deadline is reached)
AND (the bid list is nonempty)

Then (Select the task on the top of the list)
AND (initiate the bid-award procedure).

T,... If (the deadline is reached)
AND (the bid list is empty)

Then call reannounce procedure.

T^... If the bidder accepts the award
Then list the cell in the "assignment-list."

T ... If the bidder rejects the awardO
Then select the next highest ranked task.

Tg... If the cell can handle the task itself
Then list the task in the Agenda of the cell.

T^q ... If (a task announcement is received)
AND (the cell is qualified for the task)

Then (initiate the task-ranking procedure).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

159

Table 4.1, continued.

Tj^... If the required processor is busy
Then put the task on the "active-task-announcement list" corresponding

to that processor.

T^... If the processor is idle
Then select the Cask of highest ranking in the active-task-announcement

list, whose deadline is not reached.

T^-** If the deadline is not reached
Then (compute the information to fill out bid specification in the

message)
AND (send the bid message)
AND (store the task information temporarily).

T.,... If (the bid is accepted)
AND (the cell decides to accept the award)

Then (store Che task information into the Agenda of the cell)
AND (send an acceptance message to the manager cell).

T ... If (the bid is granted an award)
AND (the cell decides to reject the award)

Then (send a reject message to the manager cell).

T,,... If the bid is rejected 10
Then (select the next highest ranked task in the active-task-

announcement list).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

160

4.4.2 Implementing the Protocol

Note that the negotiation protocol represented by the production

system listed in Table 4.1 is specified in abstraction. Necessary

services to carry out the implementation are provided by programs

within the host and by protocols of lower layers; there may be several

steps until the lowest level implementation of a given protocol

layer structure is achieved. Specifying the protocol by abstraction

and subject to hierarchical refinement in this manner is consistent

with conventional protocol design principles (Bochman and Sunshine

[1980]).

Table 4.2 lists a program which implements the rules of Table

4.1 in a LISP-like language. Three kinds of literals are used in the

program:

1. Simple predicates; these are state descriptions stored in the

database. (Table B.l)

2. Functions; they return a binary value after their invocations.

Functions are used mostly for conditions checking. (Table B.2)

3. Procedures; these are used to execute corresponding actions when

rules are triggered. Some of these actions may include communi­

cation operations. (Table B.3)

The Petri nets for the negotiation process can be directly

translated into a language called PNL (Petri Net Language), as illus­

trated in Table 4.3. The purpose of expressing Petri nets with a

language like PNL is to have a machine-processable representation of

the Petri net; the PNL is then translated, in turn, into a procedure

language which can be the input language for an existing compiler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

161

Table 4.2 Specifying the Production System in Program Form

T if (NEW-TASK task)
then (TASK-INITIALIZATION task)

T2 if (TASK-EVALUATE task)
then (TASK-ANNOUNCEMENT task)

T if (BID-RETURN bid)
AND (LEQ time-now deadline)

then (BID-PROCESSING bid)

T^ if (LEQ time-now deadline)
then

T if (GT time-now deadline)
5 AND (NE bid-list blank)

then (BID-AWARD bid-list)

T, if (GT time-now deadline)
b AND (EQ bid-list blank)

then (REANNOUNCE task)

T? if (REPLY-TO-AWARD accept)
then (LIST-ASSIGNMENT task)

T. if (REPLY-TO-AWARD reject)o
then (RE-AWARD task)

T if (NOT(TASK-EVALUATE task))
7

then (LIST-AGENDA task)

T if (TASK-ANNOUNCED task)
AND (BID-EVALUATE task)

then (TASK-RANKING task)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

162

Table 4.2, continued.

T11 if (EQ(PR0CESS0R"F0R_'I:ASK task)busy)
then (LIST-ACTIVE-TASK-ANNOUNCEMENT task)

T if (EQ(PROCESSOR-FOR-TASK task)idle)
then (BID-REPLY(BID-SELECT a-t-a-1))

T^^ if (LEQ time-now deadline)
then (BIDDING task)

T if (BID-REPLY accept)
1 AND (CELL-CONDITION normal)

then (LIST-AGENDA task)
AND (REPLY-TO-AWARD accept)

T if (BID-REPLY accept)
15 AND (CELL-CONDITION not-normal)

then (REPLY-TO-AWARD reject)

T if (BID-REPLY reject)lo
then (RE-BIDDING(BID-SELECT a-t-a-1))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 4.3 The PNL Description for Petri Nets of the Negotiation Process

V INIT(ni) T8: TRANS(ng)

V PLACE(Tl) n8: PLACE(T5>

V TRANS(n2) T9: a'RANS (n,) 0

V PLACE(T2,T9) THo’ TRANS(n_) 8

V TRANS(n3) n8: PLACE (Tn ,T12)

V PLACE(T3>T4,T6) T11: TRANS(ng)

V TRANS(n.) 4 T12: TRANS(n9)

V TRANS(n3) n9: PLACE(T13)

V PLACE(T5) T13: TRANS(n1Q)

V TRANS(n5) nio: PLACE(T14,T15)

V PLACE(T7,Tg) T : 14 TRANS(n1L)

V TRANS(n?) T15' TRANS(n12)

V PLACE(Tp) £>

V PLACE(T2,T10)

V TRANS(n£) 0

163

www.manaraa.com

164

(Nelson, et. al. [1983]). Thus we are able to have Petri nets as a

high-level representation which can trigger the corresponding Petri

net language when required; the description and processing of PNL

require that unique names be assigned to the places and transitions.

4.4.3 A Task-Sharing Algorithm Based on Controlled Production System

By the aforementioned definition, the Petri net language (firable

sequences of production rules in the augmented Petri net) can be used

as a "control language" to regulate the invocation of production rules

in the production system during the problem-solving process. In

general, a production system whose control structure is described by

a control language is called a controlled production system where the

control language can be expressed as context-free languages, finite

state language, or Petri nets.

The utilization of control language in the production system

offers the following merits: first, the interpretation is more

efficient because the control language in essence puts constraints

on the applicable set of production rules and eliminates the irrele­

vant production rules from consideration; second, the control struc­

ture can be explicitly represented by proper modeling languages

which can be subject to future modification without having to change

the contents of the program, i.e., the production system. This

separation of control with programs has been advocated by some

researchers (e.g., Georgeff [1982], Kowalski [1979]).

A production system consists of a set of production rules and

a database. Each of the production rules is an if-then conditional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

165

statement. Whenever each condition element in a production is matched

by database elements, the production is said to be invocable. The

set of all invocable production rules is called the conflict set;

a conflict resolution strategy is used to select one production

from the conflict set. The actions of this production are executed,

resulting in modifications of database elements (McDermott and

Forgy [1978]).

An interpreter for production systems is called an Inference

engine (Davis, et. al. [1977]). The basic control cycle of the

inference engine is the recognition-action cycle consisting of three

phases: selection, conflict resolution, and action. In the selection

phase all invocable productions are identified to form the conflict

set. A conflict resolution method is applied in the second phase

to obtain the production rule for execution. Finally, each action

element of that production is executed.

Formally, a production system can be defined as follows:

Definition 4 (Production System)

A production system is a triple

PS = <R,D,h>

where R is the set of production names, D is the set of database

elements and h is the interpretation of the production R, expressed

in the form

h: R - (q,r)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

166

with q being the set of conditions and r the set of actions corres­

ponding to R. The state of the production system is defined by

the contents of the database elements.

Definition 5 (Controlled Production System)

A controlled production system is defined as a quadruple

M = <R,D,h,C>.

The subset <R,D,h> is a production system defined in Definition 4.

A state in the CPS is defined by a pair S = <u,X^> with u e C and

Xj e D. A production rule p is said to be applicable if up e C;

a state <up,X2> is said to be derivable from the state <u,X^>,

denoted

<u,X^> -+• <up,X2>

iff p is applicable at <u,X^> and the interpretation of p, h(p), re­

sults in a pair <q,r> satisfying q(X^) = TRUE and r(X^) = X2.

In other words, the database elements in X^ satisfy the pre­

conditions of p, the actions of p change X^ to X2, and the control

language accepts the production symbol p. The resulting new state

after applying p on <u,X^> is <up,X2>.

Thus, in the controlled production system, the control language

in effect guides the allowable sequences of production invocations,

i.e., a production is applicable only if it is accepted by the

control language. At each stage of the execution, the control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

167

language acts to "focus" the control on a subset of the productions,

the applicable productions, and prohibits the other productions from

being invoked.

Based on Definitions 1 to 5, we can now propose a theorem which

formally proves that the augmented Petri net model in essence is a

production system controlled by the Petii net language.

Theorem 1:

For any augmented Petri net

APN - <P,T,1,0,A,AP,D>

there exists a controlled production system

M - <T,D,h,C>

such that APN and M generate the same sequence of production rules.

Proof

For an augmented Petri net APN, the first five elements

<P,T,I,0,A> can define a Petri net language L(l). (Definition 2)

Since the active set of production, AP, is generated by

matching preconditions of the productions in T against the database

elements in D, AP is derivable from the production system <T,D,h>.

(Definition 4)

Now, if we let the L(l) in APN correspond to the control

language C in M, then:

(1) If a production t is firable in APN, t must satisfy (a) t e AP

and (b) I(t) is marked. These are equivalent to the conditions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

168

(a) t is applicable in the production system <T,D,h> and (b) t

is accepted by the language C. Therefore, t is applicable in M.

(Definition 5)

(ii) If a production t is applicable in M, t must satisfy (a) t is

applicable in <T,D,h> and (b) t is accepted by the control

language C; these conditions are equivalent to the conditions

(a) t e AP and (b) t e L(l); therefore t is firable in

<P,T,I,0,A>. Thus, t is also firable in APN. (Definition 3)

Q.E.D.

This isomorphism between the augmented Petri net model and a

production system model with a separate control language enables us

to deal with the task-su_.ring problem by using the production system

listed in Table 4.1 while being guided by the Petri nets shown in

Figure 4.5 and Figure 4.6. The algorithm is similar to an inference

procedure in the production systems (e.g., the 0PS5 interpreter by

Forgy [1981]) except that in the beginning of each cycle the algorithm

decides on the "applicable" production set by using the control

language. The algorithm is illustrated as follows:

Procedure - Task-Sharing (executed by a manager cell}
Input: a task T, consiting of a set of decomposable subtasks (t)
Output:

(1) Assignment of subtasks to cells
(2) Addition of subtasks to the agenda

Begin
Repeat (Based on Controlled Production System}
(Step 1) <Control> —

Apply the control language to decide the set of applicable
productions -+• p'

(Step 2) <Selection> —
Select the productions among p’ which are invocable -*■ CF (the
conflict set}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

169

(Step 3) <Con£lict Resolution> —
Select a production from the CF set according to the conflict
resolution strategy.

(Step 4) <Execution> —
Activate the RHS of the selected production

Until the goal condition.
end {task-sharing}

The inference engine adopts the data-directed search scheme in

executing the task-sharing algorithm (Buchanan and Duda [1982]). In

the first step, p' is the set of production rules whose corresponding

transitions are firable by the current marking in the Petri ueu.

Step 2 to Step 4 consitute the recognitiorv-action cycle: a rule is

invocable whenever there are database elements that satisfy the con­

ditions of the rule. If more than one rule is invocable, then the

set of all invocable rules forms the conflict set CF; a conflict

resolution strategy is used in Step 3 to select a single rule * rom

the set CF. Sophisticated conflict resolution strategies have been

devised (e.g., McDermott and Forgy [1982]), while the simplest scheme

may be to select the first production rule that is invocable.

Step 4 makes changes in the database according to the specification

of the action part of the selected rule. The cycle continues until

either of two conditions occur.

1) the goal state is derived, and the inference procedure is

successful; or

2) the goal state has not been achieved, but the conflict set in

Step 2 is empty.

In the second case, the inference procedure fails; an exception hand­

ling routine will be called upon to check the error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

170

The production system, the inference engine, and the database for

task-sharing are integrated into a knowledge-based system called the

contract processor, implemented in every cell host (Figure 4.7).

The functions performed by the contract processor are similar to

that by communication knowledge sources in the DPS network proposed in

Lesser and Corkill [1983]. In terms of the distributed problem

solving strategy presented in Section 4.2.3, the primary function of

the contract processor is to distribute subtasks among the cells. A

complete distributed scheduling algorithm based on the DPS strategy

is shown schematically in Figure 4.8. Note that this is but a sim­

plified version, since the decomposition of tasks into subtasks can

be implemented recursively (for example, see Kieburtz [1979]).

The configuration of the knowledge-based system for executing

the negotiation protocol is shown in Figure 4.9. The rules in

Table 4.1 are stored in the knowledge base, the predicates for state

descriptions are stored in the database. The control language is a

procedure language translated directly from the PNL program in

Table 4.3

4.4.4 Issues of Efficiencies

The efficiency of the task-sharing algorithm is affected by

two factors: the efficiency of the controlled production system and

the efficiency of the negotiation process. The former is related

to the organization and search strategies of the production system,

while the latter is related to the parameters of the negotiation

protocol as set by the user. This section will explore both aspects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In
fe
re
nc
e

En
gi
ne

171

o «

ouo
4-1ol-l
PM

ao•H
4-1tfl
*rf
4JO00aiz
Mo
<utomM
tu00

T3aii—I50
6
01

-C H

01M
300•Hft)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

172

Read Che
Job

Description

PartiClon the
Job into Subtasks

j - 1

'̂ Assigri'v,
Task i to

Other Cell.

Call
Task-Sharing (Tj)

Otherwise
For Every Cell

Having New Assignments
in the Set

Update the
Task Agenda

Inform the Monitor
of the New
Assignment

The Cell Host
Initiates

Miltitask Planning

Figure 4.8 The Flow Chart of the Task-Sharing Algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Intercell Communication Network

Contract
Processor

Machine
Controllers

Monitor
Cell Local

Data
Base

Operating
Sys. _m

Manufacturing
Expert
System

Communication
Processor

Figure 4.9 The Organization of a Cell Host

173

www.manaraa.com

174

For a conventional rule-based production executing data-directed

inference procedure, the cycle time of the recognize-act cycle is:

T.cycle = T.condition-match + T.action

= (P x M x T.match) + ((A/P) x T.act)

where P = size of the production system

M m size of the database

(number of predicate literals)

X.match = Average time to find a match b

between preconditions and the database elements.

A = number of action elements of all rules

T.act = average time needed to execute the action

parts of a rule

A/P = average number of actions of a rule

Since the task-sharing algorithm utilizes a control language to

screen the applicable production rules first, the cycle time of the

production system is modified as

T.cycle'= T.control + (P* x M x T.match) + ((A/P x T.act)

where T.control is the time needed to locate the applicable

productions by checking the control language. In our case, it is the

time taken for the Petri net language to find the firable transitions

based on the current markings.

P' is the size of the active production rules decided by the

control language; in general, P' < P.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

175

The response time of the negotiation process is the sum of five

elements:

task-announcement time:

bidding time: T2

bid-evaluation time: Tg

award time:

accept time: Tg.

For the sake of simplicity, we shall assume that transmission

speed of the communication subsystem is constant, i.e., is unaffected

by the traffic load. Then the throughput time is

T = 01̂ + T2 + Tg) x m1 + T^ x m2 + Tg

where

m^: average number of rear.nouncements

m2: average number of reawards.

Simulation can be conducted to investigate the appropriate

values of T2 and T ,̂ i.e., the deadline for submitting bids and

accepted awards.

The contract processor in essence serves as a scheduler that

dynamically assigns tasks to other cells. In this regard, there are

several other works which address similar problems in the distributed

processing literature. Tilborg and Wittie [1981] proposed the use of

a hierarchical high-level operating system as the control structure

of the network; tasks are recursively subdivided and assigned to the

processor which is the manager node of a subtree with sufficient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

176

capability. Bryant and Finkel [1981] and Efe [1982] all used the

loading factor as the criterion for subtask migrations to achieve load

balancing. The cooperation mechanism is implemented in a pairing

algorithm: pairs that differ greatly in load are connected, tasks

in the more loaded processor are migrated to the other processor to

reduce the load difference. All of these distributed scheduling

methods assume that the processors are homogeneous; however the nego­

tiation approach in this chapter does not need this assumption. Our

method is also more intelligent and versatile in making dynamic

assignments of tasks to processors by utilizing negotiation protocol

as the coordinating mechanims: assignments are accomplished by the

mutual selections between the manager nodes and the contractor nodes.

The coordination itself is treated as a problem-solving process.

4.5 Concluding Remarks

Smith proposes a conceptual framework for organizing cooperation

among decentralized and loosely-coupled problem-solving agents; he

uses the contract net protocol as a high-level problem-oriented

equivalence to the communications protocol of standard networks.

In this chapter we have attempted to design an intelligent manu­

facturing planning system based on the contract net framework, a

model based on the augmented Petri nets is developed to specify the

negotiation protocol. We feel that this model can better represent

the dynamic and concurrent nature of the protocol in coordinating

planning activities of manufacturing cells.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

177

The mathematical properties of the production system and the

Petri nets - safeness, deadlock-detection, reachability, and liveness-

can be used to verify and analyze the protocol. Further, treating the

distributed planning system by the community-of-exparts metaphor

enables us to take advantages of theories in economics and management

science in modeling the contract net system.

The implementation of the protocol by a knowledge-based system

helps realize the separation of logic and control components in the

computer program that executes the protocol; this gives flexibilities

in the software design aspect of the implementation. The use of

knowledge-based program also enforces the view that the contract net

protocol is a problem-solving protocol, enabling us to adopt unified

representations for both the planning activities and the cooperation

process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

178

CHAFTER 5
SUMMARY AND CONCLUSIONS

The information system in the computer integrated manufacturing

environment is a decentralized, loosely-coupled system connected by

the communication network. To perform on-line planning and control of

manufacturing processes, the information system is organized as a

distributed knowledge-based system in this thesis. Each manufacturing

cell uses a local knowledge-based planning system to manage the jobs

in the cell, while interacting with the planning systems of other

cells through the communication network. The system is decentralized

because both knowledge and data are logically and geographically

distributed: there is neither a centralized controller nor global

data stroage. The system is also loosely-coupled as a result of the

fact that, for each cell-host processor which contains the local

knowledge base, a greater percentage of the processing capacity is

devoted to problem solving than communication.

In the knowledge-based planning system within each cell, the

plans which regulate the sequence of manufacturing operations are

constructed in three steps. In the first step, a linearly-sequenced

plan is generated for each job independently by a search procedure

(this is also referred to as an inference process or rule interpreta­

tion procedure). Then, in the second step, a plan generator, called

PLAN-AHEAD, is used to detect potential conflicts of machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

179

assignments for the multiple jobs and establish necessary precedence

constraints to avoid any possible conflicts between different jobs.

Conflict detection can be achieved either by a "critic" mechanism or a

"reasoning about resource" mechanism. The best precedence ordering

among the potential conflicting actions can then be determined by

examining the duration information.

In the final step of the planning, step three, a plan-revision

scheme is used to improve the plan constructed by the first two steps.

The necessity of plan revision comes about, from the fact that the

operations for each job are generated independently in step one, with­

out considering the requirements of other jobs. The underlying idea

of plan-revision Is to detect the situations when several jobs are

waiting for the same machine and then consider reassigning waiting

jobs to other machines in order to shorten the totaJ planning duration.

An example concerning the on-line scheduling of multiple jobs

in a flexible manufacturing cell has been used to demonstrate the

planning method. It has been shown that the planning system can

function as a scheduler in a multi-processor environment - a manufact­

uring cell, for Instance - and efficiently assign sharing resources.

Because of the additional capability of the environment, the scheduler

needs to be more flexible than the traditional jcb-shop scheduler;

the planning system is used to fulfill this requirement. Furthermore,

the planning system can also handle the dynamic scheduling problem

where jobs arrive at the system randomly over time. The scheduling is

characterized as goal-directed; only the goal of the scheduling prob­

lem needs to be specified and the course of actions that can achieve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

180

the goal are selected by the planning system. The total duration of

the schedule is minimized by the planning method.

To incorporate decentralized control structure in the system, we

use a "society of experts" metaphor as the basis to organize the infor­

mation system. Each manufacturing cell is viewed as a problem solving

agent with a certain area of expertise. The knowledge required to do

a job is distributed among the agents. Thus, the decentralized task

allocation problem is treated in the context of distributed problem

solving with multiple agents. In the problem under study, each agent

is a local knowledge-based system in charge of the planning and con­

trol of the manufacturing jobs as well as cooperating with other

agents.

The major issue in this kind of distributed problem solving is

two-fold: on one hand the plans produced by individual agents must

be locally good, achieving their assigned tasks efficiently; on t,he

other hand the aggregation of these local plans should result in

overall solutions that are globally acceptable. Accordingly, coordi­

nation mechanisms are required to enable each agent to direct its own

activities in concert with the activities of the other agents based

on local decision and information.

Communication is the only way to coordinate the activities of

individual agents because of the fact that the system is decentralized

and loosely-coupled. However, instead of using distributed processing

approaches which focus primarily on correctly transmitting bit streams

of data through the communication network, we consider the communica­

tion activities at the problem solving level: the level that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

181

determines the content of the message and the effective way for the

agents to Interact in order to achieve common goals. To this end,

the information system should specify three things: the interface

language for the agents, the process that regulates the proper inter­

actions and the program that can automate the interactions.

A problem solving protocol, the negotiation protocol, is used to

fulfill these requirements. The interactions among manufacturing cells

are organized as the process of negotiation. Tasks to be distributed

are broadcast through the communication network; each cell will

evaluate the tasks and submit bids on those tasks suitable for local

execution. Tasks are then assigned to the best bidders. By means of

bid specifications and task abstractions in the interface language,

the negotiation protocol helps to reduce message traffic and message

processing overhead for using the communication network.

We have used the augmented Petri net model to represent the

negotiation process. The augmented Petri net is an integration of two

representation models: production rules are used to model the indivi­

dual events and the Petri net is used to model the interactions and

temporal relationships between these events. This augmented Petri net

model can be implemented in a rule-based system with a specified

control language, the Petri net language. The automation of the nego­

tiation process is accordingly accomplished by the inference engine

of the rule-based system and can be used to dynamically assign tasks

to appropriate cells. By implementing the algorithm for task alloca­

tion in a knowledge-based system in this way, we in effect have a uni­

fied approach to the planning process and the cooperation process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

182

In a sense we have incorporated a market structure into the

information system by means of the negotiation protocol, with tasks

viewed as commodities and the cells as the bidders with varying prefer­

ences. Just like the way commodities are allocated to economic agents

through the market, the manufacturing tasks can be allocated to

appropriate cells by using the negotiation protocol in the information

system.

As for the future extensions of this research, we need to expand

the individual knowledge-based systems to fully represent the manu­

facturing problem domain and to increase the capability for dealing

with complicated problems. More judgemental rules and heuristics

should be incorporated into the knowledge base so that the planning

system can include other functional areas in the manufacturing systems,

e.g., process selection, inventory planning and control, exception

handling, material requirement planning, etc. In addition, the knowl­

edge-base system should provide an interface with on-line users,

enabling question answering during the problem solving process.

Furthermore, the knowledge representation of the world model can

use the frame-based representation for the invariant properties of the

world, thus increase the efficiency of the pattern matching. Since

time has been an important factor in the planning, proper representa­

tion of the time domain in the world model should also be formalized.

The planning system can adopt the hierarchical approach, which

describes actions by various levels of abstractions to facilitate the

inference process for plan generation; constraints can also be

established to reduce the search space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

183

Although the term "problem" in this thesis is defined in the

context of manufacturing processes, it may very well be generalized to

other distributed environments; e.g., a business procedure in the

office automation system or a computing job in a computer network.

Analytical models for the negotiation procedure will be developed in

future research in order to id intify formal bidding and award strate­

gies in the specified problem domain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

L IS T OF REFERENCES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF REFERENCES

Baker, K.R. Introduction to Sequencing and Scheduling, John Wiley &
Sons, New York, 1974.

Bochraan, G. and Sunshine, C. "Formal Methods in Communication
Protocol Design," IEEE Transactions on Communications, 1980,
pp. 624-631.

Bourne, D. and Fucsell, P. "Designing Programming Languages for
Manufacturing Cells," The Robotics Institute, CMU-Rl-Tr-82-5
Carnegie Mellon, 1982.

Brinch Hansen, P. Operating System Principles, Prentice-Hall,
Englewood Cliffs, New Jersey, 1973.

Bryant, R. and Finkel, R. "A Stable Distributed Scheduling Algorithm,
Proceedings of the IEEE Distributed Computing Systems, 1981.

Buchanan, B. and Duda, R. "Principles of Rule-Based Expert Systems,"
Computer Science Department, HPP-82-14, Stanford, 1982.

Chandrasekaran, B. "Natural and Social System Metaphors for Distribu­
ted Problem Solving," IEEE Trans, on Systems, Man and Cybernetics
Vol. 11, No. 1, Jan. 1981, pp. 1-5.

Chen, P.P.S. and Akoka, J. "Optimal Design of Distributed Information
Systems," IEEE Trans. Computers, Vol. C-29, No. 12, Dec. 1980,
pp. 1068-1080.

Corkill, D.D. "A Framework for Organizational Self Design in Distri­
buted Problem Solving Networks," COIN Tech. Rep. 82-33, Dept, of
Computer and Information Science, University of Massachusetts,
1982.

Cutkosky, et. al. "Precision Machining Cells within a Manufacturing
System," The Robotics Institute, Carnegie-Mellon, 1983.

Danthine, A. "Protocol Representation with Finite State Models,"
IEEE Transactions on Communications, 1980, pp. 632-642.

Davis, et. al. "Production Rules as a Representation for a Knowledge-
Based Consultation Program," Artificial Intelligence, Vol. 8,
1977, pp. 15-45.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

185

Davis, R. and Smith, R. "Negotiation as a Metaphor for Distributed
Problem Solving." Artificial Intelligence, Vol. 20, 1983,
pp. 63-109.

Efe, K. "Heuristic Models of Task Assignment Scheduling in Distributed
Systems," IEEE Computer, 1982, pp. 50-56.

Enslow, P.H. "What is a Distributed Data Processing System,"
Computer, Jan. 1978, pp. 13-21.

Erman, L.D., Hayes-Roth, F., Lesser, V.R. and Reddy, D.R. "The
Heresay-II Speech Understanding System: Integrating Knowledge to
Resolve Uncertainty," Computing Surveys, Vol. 12, 1980, pp. 213-
254.

Forgy, C. 0PS5 User's Manual, Dept, of Computer Science, CMU-CS-81-
135, Carnegie-Mellon, 1981.

Fox, M.S. "An Organizational View of Distributed Systems," IEEE Trans,
on Systems, Man and Cybernetics. Vol. SMC-11, No. 1, Jan. 1981,
pp. 70-80.

Fox, M.S., Allen, B.P., Smith, S.F. and Strohm, G.A. "ISIS: A
Constraint-Directed Reasoning Approach to Job Shop Scheduling,"
CMU-Rl-Tr-83-8, The Robotics Institute, Carnegie-Mellon University,
1983.

Galbraith, J. Organization Design, Addison-Wesley, Reading, Mass.,
1977.

Georgeff, M. "Procedural Control in Production Systems," Artificial
Intelligence, Vol. 18, 1982, pp. 175-201.

Georgeff, M. "Communication and Interaction in Multi-Agent Planning,"
Proc. AAAI, 1983, pp. 125-129.

Groover, M. Automation, Production Systems and Computer-Aided
Manufacturing, Prentice-Hall, Englewood Cliffs, N.J. 1980.

Hewitt, C. "Viewing Control Structures as Patterns of Passing
Messages," Artificial Intelligence, Vol. 8, 1977, pp. 323-364.

Hoare, C.A.R. "Communicating Sequential Processes," Comm. ACM,
Vol. 21, 1978, pp. 666-677.

Kieburtz, R. "A Hierarchical Multicomputer for Problem-Solving by
Decomposition," Proceedings of the IEEE Distributed Computing
Systems, 1979, pp. 63-71.

Komfeld, W.A. "ETHER - A Parallel Problem Solving Systems,"
IJCAI, 1979.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

186

Kornfield, W. and Hewitt, C. "The Scientific Community Metaphor,"
IEEE Systems, Man and Cybernetics, 1981.

Kornfeld, W.A. "Combinatorially Implosive Algorithms," CACM, Vol. 25,
Oct. 1982, pp. 734-738.

Kowalski, R. "Algorithm = Logic + Control," Communications of the ACM,
Vol. 22, pp. 424-436.

Lesser, V.R. and Corkill, D.D. "Functionally Accurage, Cooperative
Distributed Systems," IEEE Trans, on Systems, Man and Cybernetics,
Vol. 11, No. 1, Jan. 1981, pp. 81-96.

Lesser, V. and Corkill, D. "The Distributed Vehicle Monitoring
Testbed: a Tool for Investigating Distributed Problem Solving
Networks," The A.I. Magazine, Vol. 4, No. 3, 1983, pp. 15-33.

Lesser, V.R. and Erman, L.D. "An Experiment in Distributed Inter­
pretation, " J[EEE_Transa£td£n_jon_Com£uter£, C-29 (12), Dec. 1980,
pp. 1144-1163.

Lozana-Perez, T. "Robot Programming," Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, A.I. Memo
698, 1982.

Malone, T.W., Fikes, R.E. and Howard, M.T. "Enterprise: A Market-Like
Task Scheduler for Distributed Computing Environments," Working
Paper, Xerox Palo Alto Research Center, 1983.

March, J.G. and Simon, H.A. Organization, Wiley, New York, 1958.

Marschak, J. and Radner, R. Economic Theory of Teams, Yale Univ.
Press, New Haven, CT, 1972.

McDermott, D. and Forgy, C. "Production System Conflict Resolution
Strategies," in Pattern Directed Inference Systems, D. Waterman
and F. Hayes-Roth, Eds., Academic Press, 1978.

McLean, C., Mitchell, M. and Barkmeyer, E. "A Computer Architecture
for Small-Batch Manufacturing," IEEE Spectrum, May 1983, pp. 59-64.

Minsky, M. "The Society Theory of Thinking," in Artificial Intelli­
gence - an MIT Perspective, P. Winton, Ed., MIT Press, 1979.

Moore, J.M. "A Review of Simulation Research in Job Search
Scheduling," Production and Inventory Management, Vol. 8, No. 1,
1967.

Nau, D.S. and Chang, T.C. "Prospects for Process Selection Using
Artificial Intelligence," Computer in Industry, Vol. 4, No. 3,
1981.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

187

Nelson, R., Haibt, L. and Sheridan, P. "Casting Petri Nets into
Programs," IEEE Trans, on Software Engineering, Vol. SE-9, No. 5,
Sept. 1983, pp. 590-602.

Nilson, N. Principles of Artificial Intelligence, Tioga, Palo Alto,
CA, 1980.

Nof, S.Y., Whinston, A.B. and Bullers, W.I. "Control and Decision
Support in Automatic Manufacturing Systems," AIIE Trans., Vol. 12,
No. 2, 1980, pp. 156-169.

Peterson, J. Petri Net Theory and the Modeling of Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

Rosenschein, J.S. "Synchronization of Multi-Agent Plans," PNCAI-82,
Pittsburgh, PA, 1982, pp. 115-119.

Sacerdoti, E.D. A Structure for Plans and Behavior, Elsevier, North-
Holland, New York, 1977.

Shaw, J.P. and Whinston, A.B. "Distributed Planning in Cellular
Flexible Manufacturing Systems," Technical Report, Management
Information Research Center, Krannert School, Purdue University,
1983.

Simon, H.A. The Sciences of the Artificial, Second Edition, The MIT
Press, Cambridge, Mass., 1981.

Smith, A. Wealth of Nations, 1776.

Smith, R.G. "A Framework for Problem Solving in a Distributed
Environment," Ph.D. thesis, Computer Science Dept., Stanford
Univ., 1978.

Smith, R.G. "The Contract Net Protocol: High Level Communication and
Control in a Distributed Problem Solver," IEEE Transactions on
Computer, Vol. 29, 1980, pp. 1104-1113.

Tanenbaum, A. Computer Networks, Prentice Hall, New Jersey, 1981.

Tantawi, A.N. and Towsley, D. "Optimal Load Balancing in Distributed
Computer Systems," IBM Thomas J. Watson Research Center, 1984.

Tate, A. "Generating Project Networks," Proc. IJCAI, 1977. pp. 888-
893.

Teng, A. and Liu, M. "A Formal Approach to the Design and Implementa­
tion of Network Communication Protocol," Proceedings of COMPSAC,
1978, pp. 114-128.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

188

Tenney, R. and Sandell, N. "Structures for Distributed Decision­
making," IEEE Transactions on Systems, Man and Cybernetics, 1981,
pp. 517-527.

Tilborg, A. and Wittie, L. "Wave Scheduling: Distributed Allocation
of Task Forces in Network Computers," Proceedings of the IEEE
Distributed Computing Systems, 1981, pp. 357-347.

Vere, S. "Planning in Time: Windows and Durations for Activities
and Goals," Pattern Analysis and Machine Intelligence, Vol.
PAMI-5, No. 3, May 1983, pp. 246-266.

Von Hayek, F., "The Use of Knowledge in Society," The American
Economic Review, 35, Sept. 1945, pp. 519-530.

Wah, B.W. "File Placement on Distributed Computer Systems,’' IEEE
Computer, Jan. 1984, pp. 23-32.

Wilkins, D. "Parallelism in Planning and Problem Solving: Reasoning
about Resources," Tech. Note 258, Al Center, SRI Inter., 1982.

Zisman, M. "Use of Production Systems for Modelling Asynchronous
Concurrent Processes," in Pattern Directed Inference Systems,
D. Waterman and F. Hayes-Roth, Eds., Academic Press, 1978.

Zisman, M. "Representation, Specification and Automation of Office
Procedures," Ph.D. dissertation, Wharton School, University of
Pennsylvania, 1977.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDICES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A

189

D0NE(PT2)

EXIT
MACH-PT TOOL(DOCK, UNLOAD, r.p (DOCK,UNLOAD,Cj)

IDLE PT-NBXT FINISH-OP(DOCK.t2) (0P3.NIL) (Mx,0P3,t?)
™ r M3

UNLOAD(M3)

Mx - M3 EXECUTE(M3,OP3)

TOOL MACH-PT(M3,OP3,c3) (M3,OP3,t.,)
TRANSFER(M2,M3) . J} EXTOP

FINISH-OP PT-NEXT0P
---- i----
MACH-OP IDLE(Mx,OP2,C4) (0P2.0P3) (Mx,0P2) (Mx,t4)

Mx * 2 EXECUTE(M2,OP2)

TOOL(M2,OP2.t,) MACH-PT(M2,OP2,C5)
NEXTOF SFER(M1,M2)

FINISH-OP PT-NEXTOP MACH-OP IDLE(Hx.OPl,t6) (0P1.0P2) (Mx.OPl) (Mx.t6)
Mx f* i

EXECUTE(Ml,OP1)
MACH-PT TOOL(M1,0P1,C?) (Ml,OPl,c7)

NEXTOP

:CUTE(DOCK,load)
TOOL MACH-PT(DOCK,load,C9) (DOCK,load,c9)

■̂ ENTER
PT-FMST-OP IDLE(PTl,load,clQ) (DOCK.,tlQ)

TR«naFER(DOCK,Ml)

FINISH-OP PT-NEXTOP MACH-OP IDLE(DOCK,load,ca) (Nll.OPl) (DOCK,load) <DOCK,tg)

Figure A.l The Search Tree Generated for the Planning of PART 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

190

EXIT

UNLOAD

Mx j* M3 Mx
EXECUTE(M3.0P3)

TRANSFER(HI,M3)NEXTOP

- MlMx I* Ml
EXECUTE(Ml.OPl)

NEXTOP TRANSFER(DOCK,Ml)

EXECUTE (DOCK, load)

ENTER

DONE(PT1)

PT-FIRST-OP
(PI.load,t„)

TOOL (DOCK,load,t7)

IDLE (DOCK,t„)

MACH-PT (DOCK,load,t,)

PT-NEXTOP(0P1.0P3)

FINISH-OP (DOCK,load)

MACH-PT (DOCK,UNLOAD,t.)

FINISH-OP(Mx.OPl.t.)

TOOL (DOCK,UNLOAD,t.)

PT-NEXTOP (load,0P1)

PT-NEXTOP(0P3.NIL) IDLE(DOCK.t,)

Figure A. 2 The Search Tree Generated for the Planning of PART 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

191

START

Initialization

(P ,T) = 1st entry
on E-L
TNOW = T

Activate a
blocked action
Add a precedence
constraint

Y(r) resource is^-
v jr e le a s e d x ^

queue (r)
x. empty >

Call CONFLICT-DETECTION
to check applicability

put P1 on
a resource queueApplicable ?

1. Apply P*-
2. Schedule its successor

on EVENT-LIST

EVENT-LIST ?><-
N\empty

Figure A.3 The Flow-Chart for PLAN-AHEAD, a Plan Generator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

192

Appendix B

Table B.l Predicate Literals Used in the Negotiation Protocol

1. (NEW-TASK task)

2. (BID-RETURN bid)

3. (LEQ time-now dead-line)

4. (REPLY-TO-AWARD accept)

5. (REPLY-TO-AWARD reject)

6. (NE bid-list blank)

7. (TASK-ANNOUNCED task)

8. (BID-REPLY accept)

9. (CELL-CONDITION normal)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

193

Table B.2 Functions Used in the Negotiation Protocol

1. (TASK-EVALUATE task);

To evaluate the new task, the current loading condition of the

cell, and the requirement of the task; the function returns binary

values:

TRUE: the host decides not to accept the task, will announce the

task.

FALSE: the host will execute the task.

2. (Bid-EVALUATE task):

Similar to TASK-EVALUATE except now it is to decide whether to bid

or not. Also returns binary values:

TRUE: the cell decides to participate in the bidding.

FALSE: otherwise.

3. (PROCESSOR-FOR-TASK task)

Returns two answers:

IDLE: a candidate processor within the cell can execute the task now.

BUSY: all the candidate processors for the task are currently busy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

194

B. 3 Procedures Used in the Negotiation Protocol

1 . TASK-INITIALIZATION

2. TASK-ANNOUNCEMENT*

3. BID-PROCESSING

4. BID-AWARD*

5. REANNOUNCE*

6. REPLY-TO-AWARD*

7. REBIDDING*

8. LIST-ASSIGNMENT

9. REAWARD*

10. LIST-AGENDA

11. TASK-RANKING

12. LIST-ACTIVE-TASK-ASSIGNMENT

13. BID-REPLY*

14. BIDDING*

* communication operations are involved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

195

Table B.4 Lists Used in the Negotiation Process

1. Active-Task-Announcement-List (a-t-a-1):

For each processor in the cell, this list keeps records on the

tasks that have been announced but not expired, and within the

capability of the processor. The cell-host will choose a task

from this list once the corresponding processor gets idle.

2. Assignment List:

Each manager cell keeps an assignment-list on all the tasks awarded

and the corresponding contractor cell.

3. Bid-List:

Each manager cell keeps a bid-list on all the bids received after

a task is announced.

4. Task-Agenda:

Each cell has a task-agenda which contains all the tasks assigned

to each processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

V IT A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

196

VITA

Jeng-Ping Shaw was born in Taipei, Taiwan on July 13, 1956. He

received a B.S. in Industrial Engineering from Hsing-Hwa University at

Hsinchu, Taiwan in June, 1978. Subsequently, he earned an M.S., also

in Industrial Engineering, from the State University of New York at

Buffalo in August, 1980. He had been in the doctoral program at the

School of Industrial Engineering at Purdue University for one year

before entering the Krannert Graduate School of Management in the Fall

of 1981. He received the Ph.D. degree in Management Information Systems

from Purdue University in August, 1984.

Jeng-Ping Shaw is married to Crystal J. Shaw. He will be

Assistant Professor of Business Administration at the University of

Illinois at Urbana-Champaign in the Fall of 1984.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

